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A B S T R A C T

Buildings consume huge amounts of energy for the thermal comfort maintenance of the occupants. Real-time
thermal comfort assessment is both important in the occupants’ thermal comfort optimization and energy
conservation in the building sector. Existing thermal comfort studies mainly focus on the real-time assessment
of the occupant’s current thermal comfort. Nonetheless, in the transient thermal environment, the occupant’s
current thermal comfort is not steady and changes moment by moment. Hence, a prediction error will be
elicited if we merely assess the occupant’s current thermal comfort. To address this problem, it is crucial to
comprehend the occupant’s real-time thermal sensation trend in the transient thermal environment. A novel
thermal sensation index that directly accounts for an occupant’s current thermal sensation trend is investigated
in this study. By integrating the novel thermal sensation index into an ordinary thermal comfort model, a novel
composite thermal comfort model is derived, which can simultaneously address the occupant’s current thermal
comfort and current thermal sensation trend. Next, by utilizing machine learning classifications, we propose
the intrusive and non-intrusive assessment methods of the composite thermal comfort model by analysis of
the skin/clothing temperatures of ten local body parts measured by thermocouple thermometers and upper
body thermal images measured by a low-cost portable infrared camera. The intrusive method reached a mean
accuracy of 59.7% and 52.0% in Scenarios I and II, respectively; the non-intrusive method reached a mean
accuracy of 45.3% and 42.7% in Scenarios I and II, respectively. The composite thermal comfort model provides
a thermal discomfort early warning mechanism and contributes to energy conservation in the building sector.
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Nomenclature

Abbreviations

ASHRAE American Society of Heating, Refrigerating
and Air-conditioning Engineers

HVAC Heating, Ventilation and Air Conditioning
TSV Thermal sensation vote
TCV Thermal comfort vote
TP Thermal preferences
PMV Predicted Mean Vote
RTS Relative Thermal Sensation
ATS Absolute Thermal Sensation
TCL Thermal Comfort Level
TTCL Transient Thermal Comfort Level
RTSV Relative Thermal Sensation Vote
ATSV Absolute Thermal Sensation Vote
3-point RTSS 3-point Relative Thermal Sensation Scale
7-point ATSS 7-point Absolute Thermal Sensation Scale
3-point TCS 3-point Thermal Comfort Scale
9-point TTCS 9-point Transient Thermal Comfort Scale
ROI Region of interest
YOLACT You Only Look At CoefficienTs
PCA Principal Component Analysis
CAE Convolutional autoencoder
UMAP Uniform Manifold Approximation and Pro-

jection for Dimension Reduction
MLP Multilayer Perceptron
LBPT Local body part temperatures
DRTP Dimension-reduced thermal profiles

Variables

𝑇𝐼 Air temperature in the inner chamber (◦C)
𝑇𝐸 Air temperature in the external environ-

ment (◦C)
𝐿𝑇𝑡 LBPT at time 𝑡
𝐿𝑇𝑡 Smoothed LBPT at time 𝑡
𝐿𝑇𝐺𝑡 Gradients of the LBPT at time 𝑡
𝐷𝑃𝑡 DRTP at time 𝑡
𝐷𝑃𝑡 Smoothed DRTP at time 𝑡
𝐷𝑃𝐺𝑡 Gradients of the DRTP at time 𝑡

1. Introduction

Buildings account for over one-third of global final energy con-
sumption [1] directly and indirectly, more than 50% of which is
used for occupants’ thermal comfort satisfaction through the Heat-
ing, Ventilation, and Air Conditioning (HVAC) systems [2]. Real-time
thermal comfort assessment is both important in the occupants’ ther-
mal comfort optimization and energy conservation in the building
sector. Thermal comfort is defined as ‘‘the condition of mind that
expresses satisfaction with the thermal environment and is assessed
by subjective evaluation’’ [3] by the American Society of Heating, Re-
frigerating and Air-Conditioning Engineers (ASHRAE) in the ASHRAE
Standard 55-2017, indicating that thermal comfort is only determined
by one’s subjective judgment about the surrounding thermal environ-
ment. Survey-based methods require the occupants to give real-time
personal thermal comfort via questionnaires, such as the thermal sen-
2

sation vote (TSV), thermal comfort vote (TCV), thermal preferences
Fig. 1. Schematic illustration of the drawbacks of the ASHRAE 7-point thermal
sensation scale.

(TP) [4], et cetera. In spite of the direct extraction of occupants’ real-
time thermal comfort, occupants have to continuously provide feedback
through these methods.

Despite the extensive usage of the TSV/TCV/TP, these kinds of ques-
tionnaires have three major limitations, which are illustrated as follows.
For instance, the American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) defined 7-point thermal sensation
scale [3], expressed from −3 to +3 corresponding to the categories
‘‘cold’’, ‘‘cool’’, ‘‘slightly cool’’, ‘‘neutral’’, ‘‘slightly warm’’, ‘‘warm’’,
and ‘‘hot’’, is widely used in a variety of thermal comfort studies.
First, since the TSV/TCV/TP usually has a limited range, when an
individual’s real thermal sensation exceeds the upper limit or the lower
limit, overload situations will occur, as illustrated in Fig. 1. Second,
if we suppose individuals’ real thermal sensation to be continuous,
potential fine details will be lost when only using the TSV/TCV/TP
since it is discrete, as illustrated in Fig. 1. Third, in existing thermal
comfort studies, the voting interval of the TSV/TCV/TP was usually set
to be a fixed value and sometimes cannot address the subtle changes or
fine details and consequently incapable of making a precise assessment
of thermal comfort (e.g., TSV: 5 min [5,6] or 1 min [7]; TCV interval:
15 min [8]; TP: 3 min [9], or 1 min [10]).

In the transient thermal environment, the occupant’s current ther-
mal comfort is not steady and changes moment by moment. For ex-
ample, suppose an occupant who only wears a short sleeve walks
out of a well-heated house in winter, the occupant may initially feel
comfortably cool. However, there is a high possibility that the occupant
would finally feel uncomfortably cold. On the contrary, suppose the
occupant enters a sauna room, the occupant might initially feel com-
fortably warm. As time goes by, with the body absorbing too much
heat, the occupant may finally feel uncomfortably hot. In other words,
an occupant’s thermal comfort could be ‘‘comfortable’’ at present, while
after some time, it could possibly transition to ‘‘uncomfortably cold’’
or ‘‘uncomfortably hot’’ in the transient thermal environment. Hence,
a prediction error will be elicited if we merely assess the occupant’s
current thermal comfort.

So far, scholars have done various research on assessing occupants’
thermal comfort to eliminate continuous feedback. The most exten-
sively used method is the Predicted Mean Vote (PMV) model [11],
based on six factors: air temperature, mean radiant temperature, air
velocity, relative humidity, metabolic rate, and clothing insulation,
which can affect one’s thermal sensation and comfort. The PMV model
is an empirical formulas-based model that has the ability to predict
the average thermal comfort of a large majority of people. However,
this also means the PMV model cannot account for individual differ-
ences [12]. On the other hand, since it has been revealed that individual
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differences in personal thermal comfort and the dynamic features could
be reflected in some physiological indices (e.g., skin temperature [13–
16], electrodermal activity [17], electroencephalogram [18,19], heart
rate [20], core temperature [21], sweating loss [22]), existing ther-
mal comfort studies have paid a lot attention to dynamic thermal
comfort assessment in transient thermal environments by analysis of
physiological indices and the occupants’ limited TSV/TCV/TP data to
construct personal thermal comfort models to eliminate continuous
feedback from occupants. Wang [22] developed a thermo-regulatory
model capable of predicting a subject’s thermal sensation under tran-
sient conditions by analysis of sweating loss and skin temperature.
Fiala [14] demonstrated that the skin temperature, head-core tem-
perature, and the rate of change of skin temperature are responsible
for dynamic thermal comfort modeling. Zhang [15] used the time
derivatives of the skin and core temperatures for local thermal sen-
sation prediction under transient conditions. Schellen [16] developed
a dynamic thermal comfort model based on the discharge rate of
thermoreceptor neurons transduced by a mathematical formula using
skin and core temperature recordings as inputs, which has been shown
applicable in transient conditions.

However, the problem is that existing studies on thermal com-
fort assessment in transient thermal environments mainly use the
TSV/TCV/TP to gather data from occupants and merely focus on the
assessment of current thermal comfort and none of them are capable of
accounting for the thermal sensation trend directly (e.g., is the current
thermal comfort transitioning from ‘‘comfortable’’ to ‘‘uncomfortably
cold’’ or ‘‘uncomfortably hot’’ or staying unchanging?). In summary,
there lacks a thermal sensation index that can directly account for the
real-time thermal sensation trend. If the thermal sensation trend can
be accurately assessed, it will make great contributions to the thermal
comfort assessment in the transient thermal environment and provides
an early warning mechanism for thermal discomfort.

It has been revealed that the human thermoregulation system ad-
justs heat exchange with the environment by regulating skin blood
flow through the cutaneous vessels in regard to thermal stress (namely,
heat or cold) [23,24]. Therefore, the temperature or infrared radiation
of the skin or clothing surface could be monitored to assess thermal
comfort as implemented in a variety of studies [8,9,22,25–31]. Existing
studies have extensively investigated using infrared thermometer [8]
or thermography [9,29–31] to measure skin/clothing temperatures of
specific regions of interest (ROIs) on the human body surface and use
them as features for real-time thermal comfort modeling by utilizing
machine learning classification algorithms. Even though these ROI
extraction based methods have shown promising results for real-time
personalized thermal comfort assessment, the drawbacks are summa-
rized as follows: (1) the infrared camera should be set to the direct
front of the occupant for ROI extraction [9], which could be disturbing
and decreases the user experience; (2) only a small portion (namely,
the ROIs) of the occupant’s thermal image can be used and thus causes
extreme information loss since the area out of the ROIs was not taken
into account, where a huge amount of potential latent information may
exist; (3) it usually demands a higher resolution of the infrared camera
to capture the much smaller ROIs than the whole body.

To address these challenges, in our preliminary work [32], we
proposed a novel thermal sensation index, which exactly accounts
for individual real-time thermal sensation trend and tentatively in-
vestigated its intrusive assessment method by analyzing the subjects’
skin/clothing temperatures of ten local body parts measured by thermo-
couple thermometers. In [32], we designed a 40-min-long experiment
in which indoor transient thermal environments were simulated in an
environmental test lab for the subjects to give their real-time TSVs,
which were recorded by the keyboard of the laptop computer. Actu-
ally, in [32], we also took the thermal images of the subjects’ upper
body through a low-cost portable infrared camera. In this paper, we
investigate the non-intrusive assessment method of the novel thermal
3

sensation index using the subjects’ thermal images and improve its o
Fig. 2. Schematic illustration of the Relative Thermal Sensation (RTS).

intrusive assessment method by analysis of the subjects’ local body part
temperatures (LBPT). The paper is organized as follows. The proposed
novel thermal sensation index, which accounts for the thermal sensa-
tion trend, is presented in Section 2. Section 3 illustrates the details
of the experimental thermal conditions and data collection procedures.
Section 4 shows the results and the performance metrics, as well as
discusses the limitations of this study and illustrates the potential
real-world applications of the presented novel thermal comfort model.
Finally, Section 5 concludes the paper.

2. Methodology

In order to account for the thermal sensation trend, we proposed a
novel thermal sensation index, the Relative Thermal Sensation (RTS),
which accounts for the real-time thermal sensation trend, and presented
a composite thermal comfort model in [32]. For our explorations, we
designed an experiment (see Section 3) in order to measure the subjects’
LBPT and monitor the subjects’ upper body thermal images during
heating and cooling transient thermal conditions while collecting sub-
jective TSVs. To make full use of the thermal information in the thermal
images, instead of extracting the temperature of specific ROIs in the
subjects’ thermal images, in this study, we investigate using an in-
stance segmentation algorithm to extract the subjects’ thermal profiles.
Then, a dimensionality reduction algorithm was applied to the thermal
profiles to perform feature extraction. Next, feature engineering was
applied to the LBPT and the dimension-reduced thermal profiles (DRTP)
separately to generate multiple feature sets. Finally, machine learning
classifications were carried out to evaluate the performance of each
feature set. The whole learning framework is illustrated in Fig. 8.

2.1. Novel thermal comfort model

2.1.1. Relative Thermal Sensation

𝑓 (𝑡) = 𝑓 (𝑡0) +
𝑓 ′(𝑡0)
1!

(𝑡 − 𝑡0) +
𝑓 ′′(𝑡0)
2!

(𝑡 − 𝑡0)2 +… , (1)

(𝑡) ≈ 𝑓 (𝑡0) + 𝑓 ′(𝑡0)(𝑡 − 𝑡0) (2)

Compared to the discrete ASHRAE 7-point thermal sensation scale,
n this study, thermal sensation is considered to be a continuously
nfinitely differentiable function 𝑓 (𝑡) of time 𝑡, where 𝑓 (𝑡) > 0 denotes
ot sensation, 𝑓 (𝑡) < 0 denotes cold sensation, 𝑓 (𝑡) = 0 denotes neutral
hermal sensation. The larger its absolute value |𝑓 (𝑡)|, the greater the
egree of hotness or coldness. Then at time 𝑡0, the Taylor series form
f 𝑓 (𝑡) is shown in Eq. (1).
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The linear approximation of 𝑓 (𝑡) for 𝑡 near 𝑡0 is shown in Eq. (2)
according to Taylor’s theorem. At the right side of Eq. (2), the first
term 𝑓 (𝑡0) is the exact thermal sensation degree at 𝑡0. The coefficient of
the second term 𝑓 ′(𝑡0), describing the gradient of the thermal sensation
at 𝑡0, is precisely defined as the RTS at 𝑡0 [32]. To gather the RTS
reported by the occupants and for the sake of simplification, the 3-point
Relative Thermal Sensation Scale (3-point RTSS) for the RTS assessment
was proposed in [32], which consists of three categories ‘‘colder’’ (−1),
‘‘no change’’ (0), and ‘‘hotter’’ (+1), each category in which is called
a Relative Thermal Sensation Vote (RTSV). The RTSV is defined as
‘‘colder’’ when the occupant’s current thermal sensation is lower than
the latest thermal sensation numerically (when 𝑓 ′(𝑡) < 0); the RTSV
s defined as ‘‘hotter’’ when the occupant’s current thermal sensation
s higher than the latest thermal sensation numerically (when 𝑓 ′(𝑡) >
); the RTSV is defined as ‘‘no change’’ when the occupant’s current
hermal sensation is equal to the latest thermal sensation numerically
when 𝑓 ′(𝑡) = 0). By such a definition, the RTS forms another dimension
f thermal comfort, and the 3-point RTSS can serve as a complementary
hermal sensation scale for the traditional ASHRAE 7-point thermal
ensation scale for the thermal comfort assessment in the transient
hermal environment. Fig. 2 shows the illustration of the RTS. In Fig. 2,
he blue curve indicates the real thermal sensation (𝑓 (𝑡)). The yellow
rrows are the tangents of the blue curve, which precisely illustrate the
TS (𝑓 ′(𝑡)). Furthermore, it is worth mentioning that the ‘‘hotter’’ RTS
overs not only the transition from ‘‘hot’’ to ‘‘very hot’’ sensations but
lso the transition from ‘‘cool’’ to ‘‘neutral’’ sensations. The same to the
‘colder’’ RTS.

What differs from existing thermal comfort studies mentioned in
ection 1 is that the RTS proposed by us is an independent thermal
ensation index, which forms a new branch of the thermal comfort
heory. The 3-point RTSS sounds similar to the TP, such as the McIntyre
-point TP scale [33] but fundamentally different. The TP accounts for
he occupant’s real-time thermal preference, whereas the 3-point RTSS
mphasizes the occupant’s real-time thermal sensation trend.

As is generally known, different materials have different thermal
roperties, such as specific heat capacity, heat conductivity, et cetera.
uppose there are two small particles A and B, of the same size,
urrounded by the air in a steady-state thermal environment, with other
hysical properties being the same except for the specific heat capacity.
he specific heat capacity of B is lower than that of A. When the air tem-
erature fluctuates, on account of the different specific heat capacities,
temperature difference will be generated between A and B. When the
ir temperature ascends, the temperature of A will be lower than the
emperature of B; when the air temperature descends, the temperature
f B will be lower than the temperature of A. Therefore, it is possible
o assess the air temperature trend by comparing the temperatures of A
nd B. As demonstrated in [34], the specific heat capacity of the skin
issues plays a vital role in protecting the deeper tissues from thermal
amage, indicating that the specific heat capacity distribution of the
kin tissues varies from location to location. Also, in [35], Kashcooli
t al. pointed out that the skin temperature distribution is influenced
y the distribution of blood vessels. Accordingly, on the human body
urface, the temperatures in some areas are more easily influenced
y the air temperature, while other areas may be less influenced by
he air temperature due to different thermal properties on different
kin or clothing locations. Also, intuitively, occupants tend to obtain
‘‘hotter’’ RTS when the body surface temperature is ascending, and

hey tend to obtain a ‘‘colder’’ RTS when the body surface temperature
s descending. Nevertheless, the human body is much more complicated
han two particles. Based on this, we hypothesized that it is possible to
se an occupant’s body surface temperatures in multiple locations or
4

heir gradients to assess the RTS.
Fig. 3. 7-point Absolute Thermal Sensation Scale (7-point ATSS) and the derived
3-point Thermal Comfort Scale (3-point TCS).

2.1.2. Absolute Thermal Sensation
In order to better differentiate from the RTS, the thermal sensation

in the common sense 𝑓 (𝑡0) at 𝑡0 in Eq. (2) is denominated as the
Absolute Thermal Sensation (ATS) [32]. By such a redefinition, the
thermal sensation is clearly decomposed into two categories: ATS and
RTS. Also, similar to the ASHRAE 7-point thermal sensation scale, we
defined the 7-point Absolute Thermal Sensation Scale (7-point ATSS),
as shown in Fig. 3. The 7-point ATSS has seven categories ‘‘very cold’’
(−3), ‘‘cold’’ (−2), ‘‘cool’’ (−1), ‘‘neutral’’ (0), ‘‘warm’’ (+1), ‘‘hot’’ (+2),
and ‘‘very hot’’ (+3), each category in which is called an Absolute
Thermal Sensation Vote (ATSV). Different from the ASHRAE 7-point
thermal sensation scale, in the 7-point ATSS, the ‘‘cool’’, ‘‘neutral’’, and
‘‘warm’’ ATSVs are defined to represent comfortable sensations; the
‘‘hot’’ and ‘‘very hot’’ ATSVs are defined to represent uncomfortably
hot sensations; the ‘‘cold’’ and ‘‘very cold’’ ATSVs are defined to repre-
sent uncomfortably cold sensations. Consequently, the 3-point Thermal
Comfort Scale (3-point TCS), with three categories, ‘‘cold’’ (−3), ‘‘cozy’’
(0), and ‘‘hot’’ (+3), is derived from the 7-point ATSS. Each category in
the 3-point TCS is called a Thermal Comfort Level (TCL), as illustrated
in Fig. 3.

2.1.3. Composite thermal comfort model
By integrating the 3-point RTSS into the 3-point TCS (combine

each TCL in the 3-point TCS with each RTS in the 3-point RTSS), the
9-point Transient Thermal Comfort Scale (9-point TTCS) is derived,
which is a composite thermal comfort model and has the ability to
describe both current thermal comfort and current thermal sensation
trend simultaneously, as described in Fig. 4. The 9-point TTCS has nine
categories ‘‘cold to cold’’ (−4), ‘‘cold’’ (−3), ‘‘cold to cozy’’ (−2), ‘‘cozy
to cold’’ (−1), ‘‘cozy’’ (0), ‘‘cozy to hot’’ (+1), ‘‘hot to cozy’’ (+2), ‘‘hot’’
(+3), ‘‘hot to hot’’ (+4), each category in which is called a Transient
Thermal Comfort Level (TTCL).

Note that in the 9-point TTCS, since the ‘‘hot’’, ‘‘cozy’’, and ‘‘cold’’
TTCLs are derived from the 3-point TCS and the ‘‘no change’’ RTS, they
are also considered to be instant steady-state TCLs. The ‘‘hot to hot’’ and
‘‘cold to cold’’ TTCLs mean an occupant’s hot or cold discomfort will
aggravate in the future. The ‘‘hot to cozy’’ and ‘‘cold to cozy’’ TTCLs
mean an occupant’s hot or cold discomfort will alleviate in the future.
The ‘‘cozy to hot’’ and ‘‘cozy to cold’’ TTCLs mean an occupant tends
to feel uncomfortably hot or cold in the future. Even though the ATS
exceeds the upper limit, the ‘‘hot to hot’’, ‘‘hot’’, and ‘‘hot to cozy’’ will
clearly distinguish whether the hotness is aggravating or alleviating, or
unchanging. The same to the lower limit of the ATS.

The 9-point TTCS makes thermal comfort modeling in the transient
thermal environments clearer by explicitly using two dimensions (the
RTS and TCL). If the occupant’s RTS and TCL can be assessed accu-
rately, the corresponding TTCL can be derived, which is beneficial in
predicting the occupant’s future TCL. For instance, suppose an occupant
gets back home in winter and turns on the heater to heat the house to
create a cozy environment. After turning on the heater, the occupant’s
current RTS will be ‘‘hotter’’, and the current TTCL will be ‘‘cold to
cozy’’. After the house has been heated for some time, the occupant’s
TCL may transition from ‘‘cold’’ to ‘‘cozy’’. However, if the power of the
heater is too high, the occupant’s TTCL may finally transition to ‘‘cozy
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Fig. 4. 9-point Transient Thermal Comfort Scale (9-point TTCS) generated by integrating the 3-point Relative Thermal Sensation Scale (3-point RTSS) into the 3-point Thermal
Comfort Scale (3-point TCS).
Fig. 5. Keyboard layout for the Absolute Thermal Sensation Vote (ATSV) and Relative
Thermal Sensation Vote (RTSV) input [32].

to hot’’, ‘‘hot’’, or ‘‘hot to hot’’. Therefore, we can reasonably infer that
the occupant’s future TCL may transition from ‘‘cozy’’ to ‘‘hot’’ if the
heater continues working. In that case, it would be better to turn down
the power of the heater in advance to maintain the ‘‘cozy’’ TCL without
running into the ‘‘hot’’ TCL. Assuming that the TTCL can be accurately
assessed, not only can thermal discomfort be predicted in advance, but
energy can also be saved.

2.2. Novel thermal sensation voting system

A laptop computer was utilized for the subjects’ real-time ATSV
and RTSV input in [32]. Fig. 5 shows the keyboard layout for the
ATSV and RTSV input. The number keys ‘‘1’’, ‘‘2’’, ‘‘3’’, ‘‘4’’, ‘‘5’’, ‘‘6’’,
and ‘‘7’’ represent the ATSVs ‘‘very cold’’, ‘‘cold’’, ‘‘cool’’, ‘‘neutral’’,
‘‘warm’’, ‘‘hot’’, ‘‘very hot’’, respectively. The arrow keys ‘‘up’’ and
‘‘down’’ represent the RTSVs ‘‘hotter’’ and ‘‘colder’’, respectively.

The input rule is described in Fig. 6. An alarm clock program was
installed on the laptop computer to serve as a reminder for the ATSV
and RTSV, ringing every 20 s. The subjects were requested to instantly
input either ATSV or RTSV at least once when hearing the alarm. The
priority of the ATSV is higher than that of the RTSV. Concretely, if a
subject feels a distinct change in the ATS, e.g., from ‘‘warm’’ to ‘‘hot’’,
the subject should press the keyboard button ‘‘6’’ rather than press
the keyboard button ‘‘up’’ exclusively. On the other hand, if the latest
ATSV is ‘‘warm’’ and the current ATSV is also ‘‘warm’’ while the current
‘‘warm’’ sensation is stronger than the latest ‘‘warm’’ sensation, the
subject should press the ‘‘up’’ keyboard button to express a ‘‘hotter’’
RTSV. That is to say, a transition from one ATSV to another ATSV will
also be counted as one RTSV input. As this study focuses on real-time
thermal comfort assessment under transient thermal environments, it is
necessary to gather as accurate thermal sensation as possible. Actually,
instead of only inputting the ATSV and RTSV when hearing the alarm,
the subjects were requested to instantly input the ATSV or RTSV
whenever they felt a change in their thermal sensation.
5

Fig. 6. Input rule of the Absolute Thermal Sensation Vote (ATSV) and the Relative
Thermal Sensation Vote (RTSV).

Fig. 7. Schematic of the Relative Thermal Sensation Vote (RTSV) processing
method [32].

The ATSVs and RTSVs were recorded by a small keylogger program
written by Python. The timestamps of the recordings of the keyboard
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Fig. 8. Overview of the proposed intrusive and non-intrusive personal TTCL assessment framework for an occupant-centered HVAC control system.
buttons have a resolution of 0.001 s. The ‘‘hotter’’ and ‘‘colder’’ RTSVs
were regarded to sustain for 20 s long (to keep consistent with the ATSV
and RTSV input interval) after the input when there is no successive
‘‘hotter’’ or ‘‘colder’’ RTSV within 20 s To alleviate the subjects’ mental
burden, the ‘‘no change’’ RTSV was not set as an active vote in this
study. Time periods with no ‘‘hotter’’ or ‘‘colder’’ RTS were regarded as
the ‘‘no change’’ RTS periods.

2.2.1. RTS calculation method
The RTS calculation method is illustrated in Fig. 7. First, the resolu-

tion of the time axis of the RTS is defined as 1 s to keep consistent
with the time resolution of the LBPT and the thermal images by
rounding down the timestamps of the RTSVs to the nearest integers
(e.g., 290.758 s → 290 s). Second, when there are multiple RTSVs
within 1 s, only the last RTSV will be reserved. Third, sustained periods
of the ‘‘hotter’’ and ‘‘colder’’ RTS are complemented. Finally, the ‘‘no
change’’ periods are complemented. The time interval between the start
time and the first RTSV timestamp was regarded as the ‘‘no change’’
period.

2.2.2. ATS and TCL calculation method
For the ATS and TCL calculation method, we also set the resolution

of the time axes of the ATS and TCL to 1 s to keep consistent with the
time resolution of the LBPT and the thermal images by rounding down
the timestamps of the ATSVs to the nearest integers (e.g., 1151.330 s
→ 1151 s). When there are multiple ATSVs within 1 s, only the last
ATSV will be reserved. The ATS between the start time and the first
ATSV timestamp was considered the same as the first ATSV; the ATS
between the last ATSV timestamp and the end time was considered the
same as the last ATSV. After one ATSV input, the ATS was considered
to sustain until the next ATSV input. Based on the above-mentioned
rules, the subjects’ whole ATS can be obtained. Next, based on Fig. 3,
the subjects’ TCL can be derived from the ATS.

2.3. Body surface temperature measurement

We used an intrusive method to measure the LBPT using thermocou-
ple thermometers and a non-intrusive method using a low-cost portable
infrared camera to measure the subjects’ upper body thermal images.

2.3.1. Intrusive method
We measured the LBPT as illustrated in detail in [32]. We marked

the locations of the ten local body parts on an anatomy human body
schematic [36] which can be used for free, as shown in Fig. 9. The
LBPT, as well as the air temperature, was measured by the Type 𝑇
thermocouples (copper-constantan) per 1 s with accurate temporal
synchronization and recorded by a data logger (Midi LOGGER GL840:
accuracy: ±0.5 ◦C, resolution: 0.01 ◦C), as illustrated in [32].
6

Fig. 9. Schematic of the body parts selected in this study [32].

Table 1
Specifications of the FLIR ONE Pro.
Features Descriptions

Dimensions 6.8 cm × 1.3 cm × 4.5 cm
Weight 36 g
Resolution 120 (H) × 160 (V) pixels
Thermal sensitivity 70 mK
Accuracy ±3 ◦C or ±5%
Price $375
Phone Android (USB-C)

2.3.2. Non-intrusive method
The FLIR ONE Pro, a low-cost portable infrared camera, was used

to cover infrared radiation of the subjects’ upper body surface. The
specifications of the FLIR ONE Pro are shown in Table 1. The FLIR
ONE Pro should be connected to a smartphone to fulfill its function
through the supporting app installed on the smartphone. The thermal
images were taken per 1 s using the interval timer shooting mode of
the device. Fig. 10 shows the mounting state of the FLIR ONE Pro. This
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Fig. 10. Mounting state of the infrared camera (FLIR ONE Pro).

device also has a visible light photographing mode. However, we did
not use this mode in this study to show the low requirement of the
hardware equipment for our RTS and TCL assessment framework.

2.4. Feature extraction of thermal images

To make full use of the information in the thermal images, in this
study, an instance segmentation algorithm was first used to remove
the background around the person in the thermal images. Second,
dimensionality reduction was applied to the segmented thermal images
to perform feature extraction.

2.4.1. Thermal profile extraction
Since the background surrounding the occupant in the thermal

image is unrelated to skin blood flow and thus irrelevant for thermal
comfort modeling, we removed the background and extracted the sub-
jects’ thermal profiles by utilizing an instance segmentation algorithm.
In [37], Bolya et al. proposed the You Only Look At CoefficienTs
(YOLACT), a fully-convolutional model for real-time (> 30 fps) instance
segmentation which is competitive to the state-of-the-art approaches
while still running in real-time. We utilized the YOLACT++ model
(the upgraded version of YOLACT by Bolya et al. in [38]) to extract
the subjects’ thermal profiles in the thermal images. The pre-trained
weights were downloaded from the corresponding GitHub repository
in [38].

2.4.2. Thermal profile dimensionality reduction
In [31], Cosma et al. demonstrated that it is possible to extract

the mean temperature of each local body part as features for thermal
comfort modeling, which was measured by infrared thermography.
In [29], Li et al. demonstrated that it is possible to use the mean temper-
ature of the occupants’ frontal face measured by infrared thermography
for thermal comfort modeling. The problem is that these kinds of
mean-temperature-based methods extremely decrease the thermal in-
formation in the ROIs since an area in the thermal images has hundreds
of thousands of pixels. However, since not all skin/clothing pixels in
the thermal images are relevant for thermal comfort modeling, dimen-
sionality reduction could be applied to the thermal profiles to perform
feature extraction by reducing irrelevant and redundant features while
7

preserving the most important features. According to [39], since the
Principal Component Analysis (PCA) is incapable of handling non-
linear data while the thermal profiles have highly non-linear features,
dimensionality reduction algorithms work for non-linear data should
be considered. For instance, the convolutional autoencoder (CAE), a
type of artificial neural network capable of learning efficient data
codings of the input data in a ‘‘self-supervised’’ (unsupervised) manner,
which is capable of extracting spatial relationships between pixels in
images [40] and widely used for dimensionality reduction. However,
since the CAE consumes too much computational resource, we used
the Uniform Manifold Approximation and Projection for Dimension
Reduction (UMAP) [41], a general-purpose manifold learning algo-
rithm that can be used for general non-linear dimensionality reduction
while consuming less computational resource compared to the CAE.
The UMAP seeks to learn the manifold structure of the data and find
a low-dimensional embedding that preserves the essential topological
structure of that manifold. First, the subjects’ each thermal profile was
flattened from the dimension 120 × 160 to a vector with a length of
19,200. Then the UMAP model was applied using the Python UMAP
package with the default hyper-parameters to reduce the dimension of
the flattened thermal profiles data from 19,200 to 10 to keep consistent
with the LBPT. Then, the dimension-reduced thermal profiles (DRTP)
were used as the extracted features of the original thermal images.

2.5. Feature engineering

Based on the knowledge that skin temperatures could be used to as-
sess thermal comfort according to numerous studies [25–27,31], since
the LBPT form an approximation of the whole body surface temperature
distribution and the DRTP also form an approximation of the upper
body surface temperature distribution, the LBPT and DRTP were used
for TCL modeling. As the RTS is the gradient of the ATS, intuitively,
we calculated and verified the gradients of the LBPT and DRTP for RTS
modeling. According to Figs. 18 and 19, since the UMAP components
are rather oscillative, the moving average smoothing method with a
120-s-long window size was applied to the UMAP components before
calculating the gradients.

Furthermore, as mentioned in Section 2.1.1, the temperature differ-
ences between local body parts may also be relevant for RTS modeling.
However, calculating the differences extremely increases the data ca-
pacity and requires more computational resources in the classification
process. To account for this concern, in this study, we use the Multilayer
perceptron (MLP) algorithm exclusively for classifications since the
MLP classifier calculates the differences between the input variables
internally, and if they are useful, the MLP classifier will use them au-
tomatically through the training process. Therefore, different from our
preliminary work [32], in this study, we do not calculate differences as
features to reduce redundancy and computational burden.

2.5.1. Gradients of the LBPT
The calculation method of the gradients of the LBPT is shown in

Eqs. (3) and (4).

𝐿𝑇𝑡 =
∑𝑖=29

𝑖=−30 𝐿𝑇𝑡+𝑖
60

(3)

𝐿𝑇𝐺𝑡 = 𝐿𝑇𝑡 − 𝐿𝑇𝑡−30 (4)

where 𝐿𝑇𝑡 are the LBPT at time 𝑡; 𝐿𝑇𝑡 are the smoothed LBPT at time
𝑡; 𝐿𝑇𝐺𝑡 are the gradient of the smoothed LBPT at time 𝑡 over 30 s.

2.5.2. Gradients of the DRTP
The calculation method of the gradients of the DRTP is shown in

Eqs. (5) and (6).

𝐷𝑃 =
∑𝑖=59

𝑖=−60 𝐷𝑃𝑡+𝑖 (5)

𝑡 120
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Fig. 11. Training and test set separation [32].

𝑃𝐺𝑡 = 𝐷𝑃𝑡 −𝐷𝑃𝑡−30 (6)

here 𝐷𝑃𝑡 are the DRTP at time 𝑡; 𝐷𝑃𝑡 are the smoothed 𝐷𝑃𝑡; 𝐷𝑃𝐺𝑡
re the gradient of the smoothed DRTP at time 𝑡 over 30 s. Since the
riginal UMAP components are rather oscillative (see Figs. 18 and 19),
relatively long moving average window (120 s) was applied.

.6. RTS and TCL assessments using machine learning classification algo-
ithms

.6.1. Feature sets of the LBPT
To analyze the validity and benefits of the extracted gradients of the

BPT for RTS and TCL assessments, three feature sets were defined as
ollows.

• Base feature set (Base1):
consisted of the smoothed LBPT;

• Gradients feature set (Grad1):
consisted of the gradients of the smoothed LBPT;

• Base and gradients feature set (BaseGrad1):
consisted of the smoothed LBPT and the gradients of the smoothed
LBPT.

.6.2. Feature sets of the DRTP
To analyze the validity and benefits of the extracted gradients of the

RTP for RTS and TCL assessments, three feature sets were defined as
ollows.

• Base feature set (Base2):
consisted of the smoothed DRTP;

• Gradients feature set (Grad2):
consisted of the gradients of the smoothed DRTP;

• Base and gradients feature set (BaseGrad2):
consisted of the smoothed DRTP and the gradients of the smoothed
DRTP.

.6.3. Classification algorithm
We used the MLP classifier to assess the validity of each feature set

efined in Sections 2.6.1 and 2.6.2 to predict personal RTS and TCL.
he MLP classifier was trained using the Python Scikit-learn package.
ptimal hyper-parameters of the MLP classifier were obtained using

he grid search technique (i.e., ‘hidden_layer_sizes’: [(10,), (20,), (30,),
40,), (50,), (60,), (70,), (80,)], ‘max_iter’=200, ‘activation’: [‘tanh’,
relu’], ‘solver’: [‘sgd’, ‘adam’], ‘alpha’: [0.0001, 0.05], ‘learning_rate’:
8

‘constant’, ‘adaptive’]).
Fig. 12. Schematic of the environmental test lab [32].

2.6.4. Personal RTS and TCL assessments
The feature sets defined in Sections 2.6.1 and 2.6.2 were used as the

training data after normalization, and the RTS and TCL derived from
the subjects’ RTSVs and ATSVs according to Sections 2.2.1 and 2.2.2
were used as labels for personal RTS and TCL classifications. Owing
to the limited data capacity, in order to make full use of the data,
we carried out the 5-fold blocked cross-validation without shuffling
suggested by [42,43] since the data have time dependencies, in which
each subject’s data samples were segmented into five equal-sized parts
according to chronological order, as illustrated in Fig. 11. Next, by
iterating the process of using four parts as the training set and using
the remaining one part as the test set, each part will be used as the test
set once and generates the prediction. By merging all the predictions
generated by all the test sets, the whole prediction can be generated.
Then, the TTCL prediction can be derived by integrating the RTS
prediction into the TCL prediction according to Fig. 4.

3. Experimental setup

We conducted the experiment in the winter season (February 2020)
at the environmental test lab of Tokyo Gas Co., Ltd, which consists
of an HVAC system, an external environment, and an inner chamber,
as illustrated in Fig. 12. The HVAC system is equipped with a boiler,
a chiller, and a humidity controller, which is used to control the
air temperature and relative humidity of the external environment.
There is an air-conditioner installed in the inner chamber to adjust
the air temperature inside the inner chamber. When turning on the
air-conditioner, the air temperature in the inner chamber (𝑇𝐼 ) can be
gradually adjusted. Additionally, the inner chamber has a door to allow
ventilation through the external environment. Since the volume of the
external environment is much larger than the volume of the inner
chamber, the air temperature in the external environment (𝑇𝐸) can be
egarded as changeless when opening the door to make heat exchange,
nd 𝑇𝐼 will change very fast. Consequently, 𝑇𝐼 will be drastically
djusted to 𝑇𝐸 approximately. We utilized this property to simulate a
apid temperature-changing phase in the inner chamber.

.1. Thermal conditions

𝑇𝐸 and the relative humidity in the external environment were set
o 18 ◦C and 50% throughout the experiment. Instead of steady-state
hermal environments, transient thermal environments were simulated
n this study by creating a series of cooling and heating phases in the
nner chamber by operating the HVAC system, the air-conditioner, and
he door. The door was kept open to keep the thermal condition of the
nner chamber approximately equal to the thermal condition of the ex-
ernal environment before the experiment. Two temperature-changing
cenarios were created, as illustrated in the following Sections.
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Fig. 13. Temperature scenarios in the inner chamber [32].
3.1.1. Scenario I
The temperature control scheme of Scenario I is described in the up-

per part of Fig. 13. First, close the door and turn on the air-conditioner
to gradually heat the inner chamber for 15 min, and the setpoint was set
to 30 ◦C. The 15-min-long heating phase is long enough to sufficiently
heat the inner chamber to make 𝑇𝐼 level off during the latter half of the
heating phase. The second phase was a rapid cooling phase by turning
off the air-conditioner and opening the door for 5 min. The latter two
phases were identical to the former two phases. By repeating the above-
mentioned two phases, a periodic temperature signal with a period of
20 min can be generated. The total duration of Scenario I was 40 min.
Scenario I was simulated to investigate the RTS behaviors when 𝑇𝐼
starts to level off after being sufficiently heated or cooled in the heating
and cooling phases.

3.1.2. Scenario II
The temperature control scheme of Scenario II is described in the

lower part of Fig. 13. Similar with Scenario I, two identical gradual
heating phases were simulated by closing the door and turning on the
air-conditioner to heat the inner chamber, and the setpoint was set to
30 ◦C. The first cooling phase is the same as the rapid cooling phase
in Scenario I. Different from Scenario I, a gradual cooling phase was
applied in Scenario II to replace the second rapid cooling phase in
Scenario I, in which the door was closed, and the setpoint of the air-
conditioner was set to 18 ◦C to keep consistent with 𝑇𝐸 . The gradual
cooling phase was set to 15 min long enough to ensure 𝑇𝐼 to be
lowered approximately to 18 ◦C by the end of the cooling phase.
Additionally, either of the two heating phases was shortened to 10 min
to keep the total experiment duration to 40 min to keep consistent
with Scenario I. Scenario II was simulated to observe the RTS behaviors
under completely two different cooling phases.

3.2. Experimental procedure

Six subjects participated in the experiment. All of them are male
students (age 25 ± 1 years) at the University of Tokyo. Three students
were randomly chosen and dispatched to Scenario I, and the other three
were dispatched to Scenario II.

A desk and a chair were prepared in the inner chamber. The laptop
computer for the ATSV and RTSV input was placed on the desk. The
desk and chair were positioned not to directly face the airflow from
the door or the air-conditioner, as illustrated in Fig. 12. During the
experiment, sedentary office activities were simulated by letting the
subjects sit down on the chair and press the keyboard buttons to input
the ATSV and RTSV (small range of motions allowed). Also, the same
clothes (black short sleeves, trousers, and cotton socks) were provided
to the subjects during the experiment. The subjects were requested not
9

Fig. 14. The mounting state of the experimental devices on a male subject.

to perform large motions and put their hands on their thighs when
not pressing the keyboard. A thermal insulation pad was put under the
desk on the floor to prevent unnecessary conductive heat loss from the
subjects’ feet to the floor. The subjects were confirmed whether their
current RTS is ‘‘no change’’ or not for preparation before the experiment
to maintain a steady-state thermal sensation.

During the preparation time (20 min), we fixed the thermocouples
onto the subjects’ specific local body parts as illustrated in Fig. 9 using
medical tapes. At the forehead, the lateral arm, the posterior wrist, the
dorsum of the hand, skin temperatures were measured. In contrast,
at the upper chest, the abdomen, the scapular blade, the anterior
thigh, the fibular shin, the dorsum of the foot, clothing temperatures
were measured. The subjects were requested to use the left hand to
press the keyboard to input the real-time RTSV and ATSV since the
right hand was adhered with thermocouples by the medical tape to
measure the skin temperatures. In addition, we also fixed a portable
heartbeat sensor onto the subject’s chest to measure the heartbeat data
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Table 2
Statistics of the number of original RTSVs and ATSVs by each subject.
Scenario Subject ID RTSV ATSV Total

Hotter Colder

I
1 62 41 73 176
2 66 128 118 312
3 56 47 76 179

II
4 41 55 175 271
5 65 67 139 271
6 51 45 84 180

Table 3
Total duration (s) of each subject’s each RTS category.
Scenario Subject ID RTS

Hotter No change Colder

I
1 1060 813 527
2 884 863 653
3 838 829 733

II
4 890 866 644
5 1143 721 536
6 866 846 688

for thermal comfort modeling trials, as shown in Fig. 14. The results
were promising but beyond the scope of this paper.

The infrared camera was connected to a smartphone, and the smart-
phone was placed on a tripod to uphold it to make the visual field
of the infrared camera controllable to cover the upper body (except
for the hands and a portion of the lower arms) of the subject since in
actual sedentary office activities the lower limbs are always occluded
by the desk if the infrared camera is placed on the desk. The angle
and position of the infrared camera were adjusted optimally for each
subject and kept constant throughout the experiment. In addition, since
placing the infrared camera directly opposite the subject increases the
requirement of the framework, and sometimes this could be disturbing
to the subjects, we put the infrared camera on the right front side of
the desk at a small angle from the direct front of the subject to verify
the superiority of our method over the ROI-extraction-based methods
as mentioned in Section 1.

Fig. 14 shows a male subject and the mounting state of the experi-
mental devices. The ambient air temperature was measured by a pair of
thermocouples placed 60 cm above the floor near the subject, as shown
in Fig. 14. The subjects were not aware of the opening and closing of
the door and the operations of the air-conditioner, and were requested
to input the ATSV and RTSV according to subjective thermal feelings.
The Research Ethics Committee of the University of Tokyo approved
the experiment.

4. Results and discussion

The statistics of the number of original RTSVs and ATSVs by each
subject are summarized in Table 2. Suppose a subject inputs at least
once per 20 s, the total number of the RTSVs and ATSVs should be at
least 120, and all the subjects input more than 120 times throughout
the experiment, as shown in Table 2. Table 3 summarizes the total
duration of each RTS category of each subject. It can be observed
that the class imbalance is not severe, and each RTS category takes a
relatively balanced duration for all subjects.

4.1. Data visualization

Fig. 15(a) shows an original thermal image of a subject. Fig. 15(b)
shows the instance segmentation example of Fig. 15(a) using the
YOLACT++ model as illustrated in Section 2.4.1. It can be observed
that the model works very well in extracting the subject’s thermal
10
Fig. 15. An example of the instance segmentation result ((a): original thermal image,
(b): segmented thermal image).

profile from the thermal image even though the model was trained on
a visible image dataset.

The boxplot (Fig. 16) shows the four quartile distribution of each
subject’s LBPT. In both Scenarios I and II, common features exist, such
that the clothing temperatures have a relatively wider range (the length
of the rectangle) than that measured on the skin since the clothing has a
lower specific heat capacity than the skin. Thus its temperature is more
easily influenced by the ambient air temperature. Moreover, the fore-
head temperature reached the highest range among all the local body
parts. Though noticeable individual differences among the subjects can
be observed, no obvious difference can be observed between Scenarios
I and II.

The boxplot (Fig. 17) shows the four quartile distribution of each
subject’s DRTP. In both Scenarios I and II, common features can be
observed such that the first half of the UMAP components have a
relatively wider range (the length of the rectangle) than the latter
half of the UMAP components roughly. Though noticeable individual
differences among the subjects can be observed, no obvious difference
can be observed between Scenarios I and II.

Figs. 18 and 19 show the representative data of two subjects from
Scenarios I and II, respectively. The air temperature is drawn in the
black line; the shin and abdomen temperatures are drawn in light blue
and orange lines, respectively; the original ‘‘hotter’’ and ‘‘colder’’ RTSVs
are drawn in red and blue triangles, respectively; the original ATSVs
are drawn in black circles; the first two UMAP components are drawn
in cyan and violet lines, respectively. In addition, the smoothed two
UMAP components are drawn in green and dark blue lines, respectively.

In both Figs. 18 and 19, we can observe that the UMAP components
are rather oscillative since the original accuracy of the infrared camera
is not high (see Table 1), and the moving average method is very
effective in removing the noise in the UMAP components.

In both Figs. 18 and 19, ‘‘hotter’’ RTSVs mostly appear in the heating
phases, and ‘‘colder’’ RTSVs mostly appear in the cooling phases. In
Fig. 18, in the latter half of the first heating phase, the air temperature
leveled off, and the ‘‘hotter’’ RTSVs became fewer during this period;
in the first cooling phase, the air temperature abruptly dropped due to
the effect of opening the door and leveled off rapidly, and the ‘‘colder’’
RTSVs became fewer during the latter half of this phase. In Fig. 19,
during the first cooling phase, the air temperature abruptly dropped
due to the effect of opening the door. However, the air temperature had
a small increment after the abrupt drop. Interestingly, even though the
air temperature ascended a little, the subject still densely gave ‘‘colder’’
RTSVs during this period, indicating that the RTS does not always
follow the current air temperature trend but can also be influenced by
the previous context.

As can be observed in both Figs. 18 and 19, the air temperature
during both first rapid cooling phases was no higher than that at the
beginning of the experiment. However, the two subjects’s ATS in the
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Fig. 16. Boxplot of the LBPT for all subjects (Scenario I: subject 1–3, Scenario II: subject 4–6) [32].
Fig. 17. Boxplot of the DRTP for all subjects (Scenario I: subject 1–3, Scenario II: subject 4–6).
Fig. 18. Air temperature, shin and abdomen temperatures, original ATSVs and RTSVs,
first two UMAP components, and smoothed first two UMAP components (Scenario I &
subject 1).

first rapid cooling phase is colder than that at the beginning of the
experiment, indicating that the ATS is not monotonically determined by
the current air temperature but can also be influenced by the previous
context.

In both Figs. 18 and 19, for the LBPT, we can observe that the ATSVs
are positively and strongly correlated with the shin and abdomen
temperatures. For the DRTP, in Fig. 19, both of the first two smoothed
UMAP components strongly correlate with the ATSVs negatively. How-
ever, what is noticeable is that different from the LBPT, in Fig. 18,
only the second smoothed UMAP component shows a strong positive
correlation with the ATSVs while the first smoothed UMAP component
does not since the UMAP is a non-linear process and the transformation
does not preserve physical meanings. The obvious positive or negative
11
Fig. 19. Air temperature, shin and abdomen temperatures, original ATSVs and RTSVs,
first two UMAP components, and smoothed first two UMAP components (Scenario II
& subject 4).

correlations between the LBPT as well as a portion of the DRTP and
the ATS indicate that the LBPT and DRTP could be reasonable for ATS
modeling.

In Scenario I, identical heating and cooling phases appeared in
pairs, whereas in Scenario II, the two cooling phases were completely
different. Nonetheless, in both Figs. 18 and 19, during ‘‘hotter’’ periods,
the shin temperature is higher than the abdomen temperature, whereas
during ‘‘colder’’ periods, the abdomen temperature is higher than the
shin temperature, which agrees with our hypothesis mentioned in
Section 2.1.1, indicating that it could be reasonable to use the LBPT for
RTS modeling in both Scenarios I and II. In both Figs. 18 and 19, during
‘‘hotter’’ periods, the shin and abdomen temperatures are ascending,

whereas during ‘‘colder’’ periods, they are descending, indicating that it
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Fig. 20. Predictions of the RTS (Grad1 and BaseGrad2 feature sets), predictions of the TCL (Base1 and Base2 feature sets), and the integrated TTCL predictions (Scenario I &
Subject 1).
Table 4
Mean accuracy (unit: %) of the RTS and TCL classifications in Scenarios I and II for
all feature sets.

RTS or
TCL

Scenario LBPT feature sets DRTP feature sets

Base1 Grad1 BaseGrad1 Base2 Grad2 BaseGrad2

RTS I 64.1 67.2 66.5 55.8 51.3 58.6
II 59.6 62.9 62.7 52.6 48.1 56.1

TCL I 86.8 77.8 87.5 70.5 55.7 74.3
II 80.3 63.9 78.2 73.4 55.4 67.8

could be reasonable to use the gradients of the LBPT for RTS modeling.
For the DRTP, since the UMAP components do not preserve physical
meanings, calculating differences between UMAP components makes
nonsense. What is noticeable is that, in Fig. 18, for the second smoothed
UMAP component, during ‘‘hotter’’ periods, it occupies a higher range,
while during ‘‘colder’’ periods, it occupies a lower range; in Fig. 19,
for both smoothed UMAP components, during ‘‘hotter’’ periods, they
occupy lower ranges; during ‘‘colder’’ periods, they occupy higher
ranges, indicating that it could be reasonable to use the DRTP for RTS
modeling.

4.2. TCL, RTS and TTCL assessments

Table 4 shows the mean accuracy of the RTS and TCL predictions
in Scenarios I and II using the LBPT or DRTP feature sets, respectively.
Table 5 shows the mean precision and recall of the RTS and TCL
classifications using the LBPT feature sets and the DRTP feature sets,
respectively. Figs. 20 and 21 show the RTS predictions, TCL predictions,
and the integrated TTCL predictions using the LBPT or DRTP feature
sets of the two subjects from Scenarios I and II, respectively, as we
mentioned before. In Figs. 20 and 21, for the RTS assessment, the Grad1
and BaseGrad2 feature sets were used; for the TCL assessment, the
Base1 and Base2 feature sets were used.
12
4.2.1. TCL assessment
As can be observed in Table 4, for the TCL predictions using the

LBPT feature sets, the Base1 feature set reached a mean accuracy of
more than 80% in both Scenarios I and II, indicating that the LBPT are
relevant for TCL modeling, which has been demonstrated by numerous
studies. The Grad1 feature set reached a mean accuracy of 77.8% and
63.9% in Scenarios I and II, respectively, which is lower than the
accuracy obtained by the Base1 feature set but still not bad, indicating
that the gradients of the LBPT are also relevant for TCL modeling,
which is similar with the conclusions that skin temperature gradient
can also be relevant for thermal comfort modeling as demonstrated
in some studies [5,31,44]. However, by adding the Base1 and Grad1
feature sets together, the BaseGrad1 feature set performed better than
the Base1 feature set in Scenario I while a little worse in Scenario II. The
reason is considered to be the lack of sufficient training data, and an
accuracy of approximately 80% might be the limit of the predictability
of the TCL.

For the TCL predictions using the DRTP feature sets, the Base2 fea-
ture set reached a mean accuracy of more than 70% in both Scenarios
I and II, indicating that the DRTP are relevant for TCL modeling. The
Grad2 feature set reached a mean accuracy of 55.7% and 55.4% in
Scenarios I and II, respectively, which is significantly lower than the
accuracy obtained by the Base2 feature set. Also, the BaseGrad2 feature
set outperformed the Base2 feature set in Scenario I but underper-
formed in Scenario II, indicating that the gradients of the DRTP are
less relevant or irrelevant for TCL modeling.

As can be observed in Table 5, for the TCL classifications using the
Base1, Grad1, and BaseGrad1 feature sets, by combining the Base1 and
Grad1 feature sets together, the BaseGrad1 feature set obtained a more
balanced precision and recall (i.e., no precision and recall lower than
70.1%) for all TCL categories in Scenarios I and II, indicating that both
Base1 and Grad1 feature sets are relevant for TCL modeling, which
agrees with the conclusion we mentioned above.
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Table 5
Mean precision and recall (unit: %) of the RTS and TCL classifications in Scenarios I and II for all feature sets (P: precision, R: recall).
Category Scenario LBPT feature sets DRTP feature sets

Base1 Grad1 BaseGrad1 Base2 Grad2 BaseGrad2

P R P R P R P R P R P R

RTS-hotter
I

74.6 73.4 75.9 75.5 76.8 77.5 60.3 52.2 59.2 55.3 64.5 57.0
RTS-no change 36.2 33.5 45.4 33.2 52.6 40.3 44.5 36.0 37.5 37.1 42.3 39.5
RTS-colder 64.4 80.8 68.1 86.5 67.1 78.3 61.4 75.1 57.6 57.0 65.4 74.9

RTS-hotter
II

59.6 65.9 65.1 71.3 69.4 71.7 54.9 49.5 58.6 47.4 71.3 51.7
RTS-no change 54.9 48.6 57.2 48.8 53.8 47.7 57.7 59.5 44.1 52.9 50.5 60.6
RTS-colder 64.7 68.3 67.2 74.2 67.9 72.6 45.1 43.8 48.9 40.9 56.8 48.3

TCL-hot
I

91.6 94.9 87.7 86.1 98.3 89.6 76.0 61.0 49.5 56.5 91.0 73.1
TCL-cozy 85.7 79.6 71.4 77.2 84.8 84.6 66.7 64.2 54.2 51.6 66.3 73.0
TCL-cold 83.5 90.3 76.6 69.8 84.8 91.0 69.2 81.8 54.5 49.7 71.3 72.0

TCL-hot
II

81.0 79.0 52.7 54.9 70.1 73.4 74.1 56.8 71.8 32.8 68.4 56.9
TCL-cozy 82.3 81.4 65.9 64.8 80.9 78.4 77.9 77.9 62.0 71.7 71.9 69.1
TCL-cold 52.4 58.3 48.9 38.2 76.8 80.0 62.3 84.1 23.3 28.7 71.9 64.6
Fig. 21. Predictions of the RTS (Grad1 and BaseGrad2 feature sets), predictions of the TCL (Base1 and Base2 feature sets), and the integrated TTCL predictions (Scenario II &
Subject 4).
For the TCL predictions in Figs. 20 and 21, the Base1 and Base2
feature sets performed fairly well in predicting the general trends of
the TCL. Moreover, since the Base1 feature set performed better than
the Base2 feature set in both Scenarios I and II, the intrusive method
outperformed the non-intrusive method in the TCL assessment.

4.2.2. RTS assessment
As can be observed in Table 4, for the RTS predictions using the

LBPT feature sets, the Grad1 feature set performed better than the
Base1 feature set in both Scenarios I and II and reached a mean accu-
racy of 67.2% and 62.9% in Scenarios I and II, respectively. Compared
to the TCL assessment, the Grad1 feature set has a much stronger
impact on the RTS assessment.

The overall RTS prediction accuracy is significantly lower than the
13

TCL prediction accuracy for all feature sets, as shown in Table 4. The
reason is considered to be that the limit of the predictability of the
RTS is fundamentally lower than the TCL since the RTS has much more
fine details (i.e., the frequent intermittent ‘‘no change’’ RTS) than the
TCL, as shown in Figs. 20 and 21. Therefore, an accuracy of 60%–70%
might be the limit of the predictability of the RTS. From this point
of view, both Base1 and Grad1 feature sets performed fairly well in
both Scenarios I and II, indicating that the LBPT and the gradients of
the LBPT are both relevant for RTS modeling which agrees with our
hypothesis proposed in Section 2.1.1. Also, it is noticeable that the
BaseGrad1 feature set reached a little lower accuracy than the Grad1
feature set. The reason is considered to be the lack of sufficient training
data.

For the RTS predictions using the DRTP feature sets, the Base2
feature set reached a mean accuracy of 55.8% and 52.6% in Scenarios I
and II, respectively. On the other hand, the Grad2 feature set reached a

mean accuracy of 51.3% and 48.1% in Scenarios I and II, respectively,
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Table 6
Mean accuracy (unit: %) of the TTCL predictions in Scenarios I
and II using LBPT features (RTS: Grad1, TCL: Base1) or DRTP
features (RTS: BaseGrad2, TCL: Base2).

Scenario LBPT DRTP

TTCL I 59.7 45.3
II 52.0 42.7

which has a relatively similar performance to the Base2 feature set.
Compared to the TCL assessment, the Grad2 feature set has a relatively
stronger impact on the RTS assessment. By combining the Base2 and
Grad2 feature sets together, the RTS prediction accuracy considerably
increased using the BaseGrad2 feature set, which performed best in
both Scenarios I and II and reached a mean accuracy of 58.6% and
56.1%, respectively. Therefore, it is concluded that the DRTP and the
gradients of the DRTP are both relevant for RTS modeling, which agrees
with our hypothesis proposed in Section 2.1.1.

Since the RTS has many frequent intermittent ‘‘no change’’ periods,
it is conceivable that it is more difficult to predict the ‘‘no change’’
RTS than the ‘‘hotter’’ or ‘‘colder’’ RTS. Therefore, as can be observed
in Table 5, for the RTS classifications by all feature sets, the ‘‘no
change’’ RTS obtained a relatively lower precision and recall than the
‘‘hotter’’ and ‘‘colder’’ RTS. Furthermore, by combining the Base1 and
Grad1 feature sets together, the BaseGrad1 feature set obtained a more
balanced precision and recall than the Base1 and Grad1 feature sets
(i.e., no precision and recall lower than 40.3%) for all RTS categories
in Scenarios I and II, indicating that both Base1 and Grad1 feature sets
are relevant for RTS modeling, which agrees with the conclusion we
mentioned above. For the RTS classifications using the Base2, Grad2,
and BaseGrad2 feature sets, by combining the Base2 and Grad2 feature
sets together, the BaseGrad2 feature set obtained a more balanced
precision and recall (i.e., no precision and recall lower than 39.5%) for
all RTS categories in Scenarios I and II, indicating that both Base2 and
Grad2 feature sets are relevant for RTS modeling, which agrees with
the conclusion we mentioned above.

As can be observed in Fig. 20, in the former half of the two
gradual heating phases, the air temperature gradually increased, and
the subject’s RTS was ‘‘hotter’’ mainly. However, many short periods
of ‘‘no change’’ RTS can be observed in the two gradual heating phases
even when the air temperature was continuously increasing. In Fig. 21,
in the rapid cooling phase, the air temperature did not monotonously
go down after opening the door but got an increment after the abrupt
drop. It is remarkable that the subject had no ‘‘hotter’’ RTS but still
continuously got ‘‘colder’’ RTS mainly during this period, indicating the
context-dependent property of the RTS as we illustrated above. If the
RTS were simply assessed by observing the ambient air temperature,
mistakes would be made.

In Figs. 20 and 21, the RTS trend was successfully predicted using
both LBPT and DRTP feature sets, especially in the latter half of the
first gradual heating phase in Fig. 20 and the latter half of the gradual
cooling phase in Fig. 21, when the air temperature leveled off, the ‘‘no
change’’ RTS was well predicted using both LBPT and DRTP feature
sets.

Moreover, since the Grad1 feature set performed better than the
BaseGrad2 feature set in both Scenarios I and II as shown in Table 4, the
intrusive method outperformed the non-intrusive method in the RTS
assessment. For example, in Fig. 20, in the latter half of the first cooling
phase when the air temperature leveled off, the subject’s RTS became
‘‘no change’’ and was only well predicted by the Grad1 feature set.

4.2.3. TTCL assessment
Table 6 shows the mean accuracy of the TTCL predictions in Scenar-

ios I and II integrated by the RTS predictions and the TCL predictions
using the LBPT features (RTS: Grad1, TCL: Base1) or DRTP features
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(RTS: BaseGrad2, TCL: Base2). The LBPT features reached a mean ac-
curacy of 59.7% and 52.0% in Scenarios I and II, respectively; the DRTP
features reached a mean accuracy of 45.3% and 42.7% in Scenarios I
and II, respectively. Therefore, the intrusive method outperformed the
non-intrusive method. The prediction result is not bad as the number
of classes of the TTCL is relatively large (nine). The TTCL prediction
accuracy obtained in this paper using the LBPT features is much higher
than that in our preliminary work [32], and also higher than that in
the conference paper [45].

The significance of the 9-point TTCS is that ‘‘cozy to hot’’ and
‘‘cozy to cold’’ TTCLs can generate thermal discomfort early warning
mechanisms from running into ‘‘hot’’ or ‘‘cold’’ TCLs. For instance, in
Fig. 20, in the second gradual heating phase, during 1400–1550 s, the
subject’s RTS was ‘‘hotter’’ while the TCL was still ‘‘cozy’’ after turning
on the heating mode of the air-conditioner, the TTCL was mostly ‘‘cozy
to hot’’ and was successfully predicted by both LBPT and DRTP features;
in Fig. 21, in the rapid cooling phase, during 600–700 s, the subject’s
RTS was ‘‘colder’’ while the TCL was still ‘‘cozy’’ after turning on the
cooling mode of the air-conditioner, the TTCL was mostly ‘‘cozy to
cold’’ and was successfully predicted by both LBPT and DRTP features.

Moreover, the significance of the 9-point TTCS is that ‘‘hot to hot’’
and ‘‘cold to cold’’ TTCLs can generate thermal discomfort deterioration
prevention mechanisms that can prevent current thermal discomfort
from deteriorating. For instance, in Fig. 20, in the second gradual
heating phase, during 1550–1800 s, the subject’s RTS was ‘‘hotter’’
while the TCL was ‘‘hot’’, the TTCL was mostly ‘‘hot to hot’’ and was
successfully predicted by both LBPT and DRTP features; in Fig. 21, in
the gradual cooling phase, during 1800–1950 s, the subject’s RTS was
‘‘colder’’ while the TCL was ‘‘cold’’, the TTCL was mostly ‘‘cold to cold’’
and was successfully predicted by both LBPT and DRTP features.

4.3. Limitations

The limitations of this study are illustrated as follows. Firstly, con-
sidering the subjects’ mental burden, the ‘‘no change’’ RTSV was not set
to an active vote, and the duration of the ‘‘hotter’’ and ‘‘colder’’ RTSVs
was regarded to sustain for 20 s. However, a rather slight ‘‘hotter’’ or
‘‘colder’’ RTSV may not sustain for 20 s, resulting in possible inaccurate
RTS acquisitions.

Secondly, since the 3-point TCS is derived from the 7-point ATSS,
three categories of the ATS (‘‘warm’’, ‘‘neutral’’, and ‘‘cool’’) are inte-
grated to one ‘‘cozy’’ TCL. Therefore, the ‘‘cozy to hot’’ and ‘‘cozy to
cold’’ TTCLs may not mean the TCLs are deviating from ‘‘cozy’’ and
cause ambiguities. For example, suppose an occupant’s original ATS
is transitioning from ‘‘cool’’ to ‘‘neutral’’, namely, the corresponding
TCL and RTS are ‘‘cozy’’ and ‘‘hotter’’, respectively, and the TTCL will
be ‘‘cozy to hot’’. However, since the ‘‘neutral’’ ATS is cozier than the
‘‘cool’’ ATS, intuitively, the TTCL should be ‘‘cold to cozy’’ but not ‘‘cozy
to hot’’. However, it is not that big of a deal. We can simply solve
this problem by redefining the ‘‘cozy’’ TCL to exclusively contain the
‘‘neutral’’ ATS. In fact, in this study, to reduce the error caused by the
subjects’ subjectivity as well as to increase the stability, the ‘‘cozy’’ TCL
was regarded to include a broader range covering the ATS of ‘‘warm’’,
‘‘neutral’’, and ‘‘cool’’. After the transformation from the ATS to the
TCL, the internals in the original ATS could be neglected.

Thirdly, the instance segmentation-based feature extraction method
can only work under the condition that the users wear similar clothes
to the original one used to gather data and train the model. If the
users change their clothes significantly (e.g., from short sleeves to
cotton coat), the trained model might never be valid. However, we can
solve this problem by training several corresponding models for one
individual wearing several typical clothes. Alternatively, we can use
head segmentation algorithms instead to obtain the occupants’ head
thermal profiles to solve this problem since the head is not covered by
the clothes.
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Fourthly, as this study is focused on the personalized assessment
of thermal comfort and belongs to non-statistical analysis, a relatively
small subject sample size (six young male subjects) was adopted. Even
though the results are significant, a larger subject sample size and
additional investigation on aged people would enhance the validity of
the results.

Lastly, though the gradual heating phase, the rapid and gradual
cooling phases were simulated in the experiment, the rapid heating
phase was not investigated in this study.

5. Conclusions

In this paper, we investigated the concept of RTS by merely adding
two additional RTSVs (‘‘hotter’’ and ‘‘colder’’) to a conventional ther-
mal sensation scale (7-point ATSS). The RTS forms a new branch of
the thermal comfort theory and bridges the gap for the assessment
of thermal sensation trend in the field of thermal comfort, which
brings new insight for transient-state thermal comfort assessment since
the RTS can provide ordinary thermal comfort models with another
dimension to enhance them by forming composite thermal comfort
models. Then, we investigated the intrusive and non-intrusive methods
for real-time RTS assessments. The RTS does not always comply with
the current ambient air temperature trend but can also be influenced by
the previous context. By integrating the 3-point RTSS into the 3-point
TCS, the 9-point TTCS was derived, which is capable of both predicting
the current thermal comfort and the current thermal sensation trend
and can provide an early warning mechanism and a deterioration
prevention mechanism for thermal discomfort. We used the MLP clas-
sification algorithm to assess the subjects’ personal real-time RTS and
TCL. Additional findings that were not reported in our preliminary
work [32] are illustrated as follows: (1) the LBPT, the gradients of the
LBPT, the DRTP, and the gradients of the DRTP have been shown to
be relevant for RTS modeling; (2) the LBPT, gradients of the LBPT,
and the DRTP have been shown to be relevant for TCL modeling; (3)
in addition to the thermal discomfort early warning system, the TTCL
also has a thermal discomfort deterioration prevention mechanism;
(4) for the TTCL assessments, the intrusive method outperformed the
non-intrusive method; (5) for the intrusive method of the TTCL using
the LBPT features, the mean accuracy reached 59.7% and 52.0% in
Scenarios I and II, respectively, which is much higher than that in our
preliminary work [32]; for the non-intrusive method of the TTCL using
the DRTP features, the mean accuracy reached 45.3% and 42.7% in
Scenarios I and II, respectively. This pilot study facilitates practical
applications for thermal discomfort early warning systems and dete-
rioration prevention systems and contributes to energy conservation in
buildings.
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