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A B S T R A C T

Buildings consume huge amounts of energy and utilize most of it for occupants’ thermal comfort satisfaction.
Real-time thermal comfort assessment can enormously contribute to thermal comfort optimization and energy
conservation in buildings. Existing thermal comfort models mainly utilize classification algorithms to identify
personal thermal comfort states, resulting in significant information loss. In addition, existing thermal comfort
studies mainly use the Fast Fourier Transform (FFT) for frequency-domain heart rate variability (HRV) feature
extraction to compute the power of the Low-frequency (LF) and High-frequency (HF) bands of the R–R
intervals (RRIs), resulting in the insufficient use of the information in the RRIs. To account for these concerns,
this study defines personal thermal sensation as a continuous function of time, and investigates using the
Hilbert Transform (HT) to extract the instantaneous amplitude (iA) of the LF and HF for thermal comfort
modeling. Moreover, a novel continuous thermal sensation acquisition system has been designed to obtain
the subjects’ approximate continuous thermal sensation. The FFT-based HRV features, HT-based HRV features,
and time-domain HRV features have all been shown to be relevant for personal thermal comfort modeling.
By utilizing machine learning regressions, it is feasible to combine the HT-based HRV features and other HRV
features together to boost personal thermal comfort prediction accuracy. The subjects’ personal thermal comfort
prediction reached the highest average coefficient of determination (R2) of 0.73 by using all the HRV features
together. This study facilitates practical applications for wearable thermal comfort assessment frameworks and
contributes to energy conservation in buildings.
1. Introduction

Buildings consume over one-third of global final energy consump-
tion [1] and use more than 50% of it for the occupants’ thermal comfort
maintenance through the Heating, Ventilation, and Air Conditioning
(HVAC) systems [2]. Accurate real-time thermal comfort assessment
is essential and critical in thermal comfort satisfaction, intelligent
HVAC system control, and energy conservation in the building sector.
Thermal comfort is defined as ‘‘the condition of mind that expresses
satisfaction with the thermal environment and is assessed by subjective
evaluation’’ [3] by the American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE) in the ASHRAE Standard 55,
indicating that thermal comfort is only determined by one’s subjec-
tive judgment about the surrounding thermal environment. Thermal
comfort studies focused on collective thermal comfort satisfaction in
multi-occupancy scenarios have been extensively researched, such as in
Jung et al. [4]. In this paper, we investigate personalized thermal com-
fort assessment in single-occupancy scenarios. Although survey-based
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methods can make direct extraction of occupants’ personal real-time
thermal comfort through questionnaires, such as the thermal sensation
vote (TSV), continuous feedback provided by the occupants is required.

In single-occupancy scenarios, in order to enhance intelligent HVAC
system control, it is necessary to understand the degree of one’s thermal
comfort as feedback to the control algorithm of the HVAC system. As
existing thermal comfort studies usually use classification algorithms to
identify discrete personal thermal comfort state (e.g., ‘‘uncomfortably
hot’’, ‘‘comfortable’’, or ‘‘uncomfortably cold’’), many fine details of the
real-time thermal sensation will be lost, which impairs the precision of
the control algorithm of the HVAC system. For instance, an ‘‘uncomfort-
ably hot’’ state may vary significantly from ‘‘slightly hot’’ to ‘‘extremely
hot’’. If the real-time thermal sensation is in a continuous form, the
problem can be completely solved.

Due to the fact that individual differences in personal thermal com-
fort could be reflected in physiological indices, physiological indices
should be taken into account. In order to achieve real-time personal
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Nomenclature

Abbreviations

ASHRAE American Society of Heating, Refrigerating
and Air-conditioning Engineers

HVAC Heating, Ventilation and Air Conditioning
PMV Predicted Mean Vote
TSV Thermal sensation vote
ROI Region of interest
EEG Electroencephalogram
RTS Relative Thermal Sensation
ATS Absolute Thermal Sensation
7-point ATSS 7-point Absolute Thermal Sensation Scale
ATSV Absolute Thermal Sensation Vote
ECG Electrocardiogram
MAP Mean arterial blood pressure
mPMV Modified PMV model
HRV Heart rate variability
RRI R–R interval
PNS Parasympathetic nervous system
SNS Sympathetic nervous system
LF Low-frequency band (0.04–0.15 Hz)
HF High-frequency band (0.15–0.4 Hz)
IHR Instantaneous heart rate
DFT Discrete Fourier Transform
SDSD Standard deviation of successive RRIs
RMSSD Square root of the mean of the sum of the

squares of differences between successive
RRIs

pNN50 Proportion of the number of RRI differences
of successive RRIs which are greater than
50 ms, divided by the total number of RRIs

FFT Fast Fourier Transform
PSD Power spectral density
LFp Power of the LF
HFp Power of the HF
HT Hilbert Transform
iA Instantaneous amplitude
LFiA iA of the LF
HFiA iA of the HF
Base Time-domain HRV features
F FFT features
H HT features
BaseF Base and FFT features
BaseH Base and HT features
FH FFT and HT features
BaseFH Base, FFT, and HT features
MLP Multilayer Perceptron
MSE Mean squared error
R2 Coefficient of determination

Symbols

𝐹 Fourier Transform operator
𝑈 Unit step function
𝜇 Mean value
𝜎 Standard deviation

thermal comfort assessment using physiological indices and improve
comfort, the measurement should neither be cumbersome nor disturb-
ing. With the above-mentioned concerns, the heart rate variability
2

Variables

𝑓 (𝑡) Continuous thermal comfort at time 𝑡
𝑅𝑅𝑖 𝑖th RRI in successive RRIs
𝑁 Length of a sequence
𝑥[𝑛] Sequence with a length 𝑁
𝑦[𝑘] FFT of 𝑥[𝑛]
𝑥(𝑡) Signal at time 𝑡
𝑥𝑎(𝑡) Analytic signal of 𝑥(𝑡)
𝑥𝑖𝐴(𝑡) iA of 𝑥𝑎(𝑡)
𝑋𝑡 A certain HRV feature at time 𝑡
𝑋𝑡 A certain smoothed HRV feature at time 𝑡
𝑇𝐼 Air temperature of the inner chamber (◦C)
𝑇𝐸 Air temperature of the external environ-

ment (◦C)

(HRV), which is generally considered to be related to sympathovagal
balance [5–7], has drawn attention to thermal comfort modeling in
recent years [8–10], which is easy to measure since the heartbeat
measurement only requires one portable and non-intrusive heartbeat
sensor.

Fig. 1 shows a schematic of an Electrocardiogram (ECG) graph. In
the ECG graph, the most prominent wave is called the R wave, as
illustrated in Fig. 1. The difference in time between two consecutive
R waves is called the R–R interval (RRI). It has been revealed that the
RRI generates much more information than the original ECG for stress
analysis. The HRV is precisely defined as the physiological phenomenon
of the variation in consecutive RRIs. The more variations, the higher the
HRV; the fewer the variations, the lower the HRV, as illustrated in the
upper and lower parts in Fig. 1.

To address these challenges, in this paper as well as in our previous
works [11,12], we define personal thermal sensation to be a continuous
function 𝑓 (𝑡) of time 𝑡, where 𝑓 (𝑡) > 0 denotes hot sensation, 𝑓 (𝑡) < 0
denotes cold sensation, 𝑓 (𝑡) = 0 denotes neutral thermal sensation.
The larger its absolute value |𝑓 (𝑡)|, the greater the degree of hotness
or coldness. In Wang et al. [11], we proposed the concept of Relative
Thermal Sensation (RTS), which is precisely defined as the gradient of
the thermal sensation (𝑓 ′(𝑡)), and redefined the thermal sensation in the
common sense (𝑓 (𝑡)) as the Absolute Thermal Sensation (ATS). Then
we conducted an experiment to create transient thermal environments
and investigate the subject’s ATS and RTS assessment methods under
such thermal conditions by analysis of the subjects’ local body part
temperatures measured by thermocouple thermometers. Actually, in
Wang et al. [11], we also measured the subjects’ RRIs (unit: ms) in real-
time through a portable, non-intrusive, and low-cost heartbeat sensor
myBeat WHS-1 [13]. In this paper, we investigate using HRV analysis
for personal ATS modeling using the subjects’ RRIs measured in Wang
et al. [11]. The RTS proposed in Wang et al. [11] is beyond the scope
of this paper.

The contributions of this paper are illustrated as follows. A novel
thermal sensation acquisition system allowing voting at any time has
been designed to obtain the subjects’ real-time approximate continuous
thermal sensation. The proposed thermal comfort learning framework
by analysis of HRV indices has been verified to be applicable under
transient thermal environments. Frequency-domain HRV features ex-
tracted by the Hilbert Transform (HT) have been verified relevant for
thermal comfort modeling. By combining the HT-based HRV features
and other HRV features together, personal thermal comfort prediction
accuracy can be boosted. The paper is organized as follows. The related
works are discussed in Section 2. The HRV feature extraction and
data analysis method are presented in Section 3. Section 4 illustrates
the details of the experimental thermal conditions and data collection
procedures. Section 5 shows the results and the performance metrics.

Finally, Section 6 concludes the paper.
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Fig. 1. An illustration of the Heart rate variability (HRV).
2. Related works

This section discusses some representative works on personal ther-
mal comfort assessment by various physiological indices and their
drawbacks. It has been revealed that the human thermoregulation
system adjusts heat exchange with the surroundings by vasoconstric-
tion and vasodilation of cutaneous vessels in regard to thermal stress
(namely, heat or cold) [14,15]. Existing studies have extensively inves-
tigated using skin/clothing temperatures or radiation for thermal com-
fort modeling [16,17]. However, the drawbacks of these skin/clothing
temperatures or radiation-based methods are summarized as follows:
(1) these methods usually require multiple temperature sensors, de-
creasing the user experience and comfort; (2) the users have to show
desired gestures or deliberate directions to the infrared camera, re-
sulting in an inexpedient manner to assess the users’ thermal comfort
in some specific scenarios (e.g., (a) sleeping state when the body is
covered by the bed quilt; (b) when the user changes the body direction);
(3) in order to obtain the users’ thermal images omnidirectionally
for Region of Interest (ROI) extraction, multiple infrared cameras are
required, increasing the apparatus cost; (4) the infrared camera-based
method is not applicable in the outdoor environment for wearable
cooler users. Yao et al. and Yang et al. [18,19] demonstrated that
the electroencephalogram (EEG) could be used for thermal comfort
modeling. However, the cumbersome measurement apparatus and the
low sensitivity problems remain. In Schmidt et al. [20,21], the authors
revealed that cooling as a thermal stimulus during driving can cause
an increase in the pupil diameter, indicating that the pupil diameter
can serve as a biomarker to thermal stimuli. However, due to the
fact that the pupil diameter is affected by substantial factors such as
the light and the necessity of using a camera to take a measurement,
it is considered not suitable for convenient thermal comfort assess-
ment. Moreover, it has been revealed that with the body exposure
to decreasing ambient air temperature, an increase in systolic blood
pressure can be caused [22–24]. Gilani et al. [25] demonstrated that
the mean blood pressure has a strong correlation with the activity
level, and proposed a modified PMV model (mPMV) using mean arterial
blood pressure (MAP) instead of activity level. However, some studies
indicate that the blood pressure is indefinite to thermal stimulus [26].
Also, real-time blood pressure measurement is expensive and thus
considered inappropriate to be applied for convenient thermal comfort
measurement.

Compared to multi-point measurement of body surface tempera-
tures, the heartbeat measurement is much easier to achieve since it only
requires one portable and non-intrusive heartbeat sensor even though
in extreme conditions when the occupant’s body is covered by the bed
quilt during sleeping state. Suppose the HRV can represent personal
3

thermal comfort. In that case, it could be promising for the imple-
mentation of a convenient and wearable thermal comfort assessment
framework using such a portable and non-intrusive heartbeat sensor,
which is not only applicable in the indoor environment but also in the
outdoor environment for wearable cooler users.

Preceding studies have shown that power spectrum analysis of the
HRV can provide a quantitative non-intrusive method for assessing
the sympathovagal balance [27–29]. The activities of the sympathetic
nervous system (SNS) and parasympathetic nervous system (PNS) con-
tribute to the heart rate power spectrum at specific frequencies. Fig. 2
shows a schematic of the heart rate power spectrum. Substantial empiri-
cal evidence has shown that the activity of the SNS has an impact on the
Low-frequency band (LF) of the heart rate power spectrum, from 0.04–
0.15 Hz, whilst the PNS influences the High-frequency band (HF) of
the heart rate power spectrum, from 0.15–0.4 Hz, and also probably a
proportion of the LF [30–33]. In order to distinguish from the frequency
bands, we adopt a subscript ‘‘p’’ in a frequency band to denote its
power (LFp and HFp). The LFp, HFp, and LFp∕HFp have been adopted
as stress biomarkers in substantial studies [5,34–36]. Liu et al. [8]
revealed that the LFp∕HFp at comfort level was significantly lower than
that at discomfort level (𝑃 < 0.05) and demonstrated that the LFp∕HFp
could be used for thermal comfort modeling. Morresi et al. [37–39]
conducted a series of studies to investigate the feasibility of using
HRV indices for personal thermal comfort modeling, and demonstrated
that only using LFp∕HFp to predict personal thermal comfort decreases
prediction accuracy. Nonetheless, the LFp has been challenged as a
reliable index for physical stress assessment. Arai et al. [40] demon-
strated that with increasing exercise levels, the subjects’ LFp decreased.
Moreover, the LFp∕HFp has received much criticism for sympathovagal
balance assessment [41–44]. Since various evidence has shown that the
interactions between the SNS and PNS are rather complex and non-
linear [41,43,45], the LFp∕HFp, a simple number, which is based on
a simple linear interaction between the SNS and PNS, is incapable of
accurately measuring the sympathovagal balance [46]. Instead of using
the LFp∕HFp directly, Rosenberg et al. [47] revealed the fact that it is
better to use the information in the LF and HF separately by proposing
a two-dimensional representation of the LF and HF.

Furthermore, although numerous studies have extensively inves-
tigated applying the Fast Fourier Transform (FFT) to calculate the
power of the LF and HF, the FFT cannot deal well with artifacts or
irregularities in the RRIs, which may be generated by measuring errors
or physical activities such as a deep breath as pointed out by Rosenberg
et al. [47], resulting in approximate rectangular patterns (the width of
which is equal to the applied sliding time window) in the computed
plots of the LFp, HFp, and LFp∕HFp over time. To address this challenge,
in Rosenberg et al. [47], instead of using the FFT to compute the
power of the LF and HF, the authors proposed to use the instantaneous
amplitude (iA) of the LF and HF obtained through the HT [48–50].
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Fig. 2. Schematic of the Low-frequency component (LF) and the High-frequency component (HF) in the Power Spectral Density (PSD) of the IHR.
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. Methodology

In this section, we investigate using HRV indices as features for
ersonal ATS modeling. In order to account for the problems men-
ioned above, the FFT and HT were both conducted and compared
or frequency-domain HRV feature extraction using the subjects’ RRIs.
n addition, time-domain HRV features were also extracted. Then, we
nvestigate the possibility of enhancing thermal comfort prediction by
tilizing HT-based features and other HRV features together by utilizing
achine learning techniques. Next, multiple feature sets were defined

o evaluate the proposed HRV features. A novel continuous thermal
ensation acquisition system is proposed to gather the subjects’ approx-
mate continuous thermal sensation. Finally, due to the continuous ATS
ssumption, machine learning regressions were carried out to evaluate
he performance of each feature set in predicting the subjects’ personal
TS.

.1. FFT and HT-based frequency-domain HRV feature extraction

We used the FFT and HT to calculate frequency-domain HRV fea-
ures, the procedures of which are outlined in Algorithm 1 and Algo-
ithm 2.

For the FFT-based method, firstly, linear interpolation was applied
o the RRIs with an interval of 1 s. Second, the instantaneous heart rate
IHR) was calculated by Eq. (1) using the interpolated RRI. Next, a 5-
in-long sliding time window with a 1-s increment was used to divide

he IHR into overlapping segments. Here, for reliable assessment, we
dopted the length of the sliding time window to be 5 min to ensure
hat the lowest frequency (0.04 Hz) of the lower cut-off of the LF
ccurs sufficiently (12 cycles in 5 min) in every sliding time window
s suggested by [47].

HR = 60 s
RRI

(1)

Next, the FFT was applied to the IHR to generate the FFT signals
or every sliding time window. The FFT is a very fast algorithm for
he computation of the Discrete Fourier Transform (DFT) [51,52]. The
4

FT of a length-𝑁 sequence is defined as Eq. (2). In Eq. (2), 𝑥[𝑛] is a 𝑥
ength-𝑁 sequence, 𝑦[𝑘] is the FFT of the 𝑥[𝑛] with the same length.
he FFT calculation was conducted using the Python Scipy package.

[𝑘] =
𝑁−1
∑

𝑛=0
𝑒−2𝜋𝑗

𝑘𝑛
𝑁 𝑥[𝑛] (2)

Finally, the power for every sliding time window was calculated
using Eq. (3). In Eq. (3), the denominator is the 5-min-long (300 s)
time window, and the numerator is the square of the magnitude of the
FFT of the IHR. Then, the LFp and HFp were computed by the integral
of the power according to their corresponding frequency bands, i.e., LF:
0.04–0.15 Hz, HF: 0.15–0.4 Hz.

PSD =
|FFT|2

300 s
(3)

Algorithm 1 Calculation method of the LFp and HFp
Input: RRIs
Output: LFp and HFp
1: Apply linear interpolation to the original RRI with an interval of 1

s
2: Calculate the IHR using the interpolated RRI
3: Divide the IHR using a 5-min-long sliding time window with a 1-s

increment
4: Apply the FFT to every sliding time window of the IHR to compute

the power and obtain the LFp and HFp at every corresponding time
point

For the HT-based method, first, linear interpolation was applied to
the RRIs with an interval of 1 s. Second, the FFT was used to bandpass-
filter the RRIs into the LF and HF. Third, the HT was applied to the
LF and HF to compute the analytic signals. The analytic signal 𝑥𝑎(𝑡) of
signal 𝑥(𝑡) is calculated by Eq. (4), where 𝐹 is the Fourier Transform
perator, 𝑈 is the unit step function. Then, the 𝑦 at the right side of
q. (4) is the HT of 𝑥(𝑡) [53,54]. The iA is obtained by the magnitude of
he analytic signal, as indicated by Eq. (5), where 𝑥𝑖𝐴(𝑡) is the iA of 𝑥𝑎(𝑡).
he HT calculation was conducted using the Python Scipy package.

−1 (4)
𝑎(𝑡) = 𝐹 (𝐹 (𝑥)2𝑈 ) = 𝑥(𝑡) + 𝑖𝑦
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Finally, the LFiA and HFiA at every time point from the complex-
valued analytic signals were obtained by Eq. (5).

𝑥𝑖𝐴(𝑡) = |𝑥𝑎(𝑡)| (5)

Different from [47], the process of removing the outliers by exclud-
ing the 20% largest and smallest values was not carried out in this study
to keep consistent with the FFT-based method for comparison.

Algorithm 2 Calculation method of the LFiA and HFiA [47]
Input: RRIs
utput: LFiA and HFiA

1: Apply linear interpolation to the original RRI with an interval of 1
s

2: Use the FFT to bandpass-filter the interpolated RRI into the LF and
HF

3: Apply the HT to the LF and HF to compute the analytic signals
4: Obtain the respective iA at every time point from the complex-

valued analytic signals of the LF and HF

3.2. Time-domain HRV feature extraction

In addition to the frequency-domain HRV features extracted by the
FFT and HT, we also calculated the time-domain HRV indices [9],
i.e., the standard deviation of the difference between adjacent RRIs
(SDSD), the square root of the mean of the sum of the difference of
successive RRIs (RMSSD), the percentage of RRI pairs that differ by
0 ms in the entire recording (pNN50), over a 5-min-long sliding time
indow with a 1 s increment, as shown in Eqs. (6)–(8). In Eqs. (6)–

8), the 𝑅𝑅𝑖 is the 𝑖th RRI in successive RRI series. Moreover, in [55],
hoi et al. demonstrated that the heart rate itself is relevant for thermal
omfort modeling. Therefore, the RRI was also used as a time-domain
eature.

DSD =

√

∑𝑁
𝑖=1(𝑅𝑅𝑖 − 𝑅𝑅)2

𝑁 − 1
(6)

MSSD =

√

√

√

√
1

𝑁 − 1

𝑁−1
∑

𝑖=1
(𝑅𝑅𝑖+1 − 𝑅𝑅𝑖)2 (7)

pNN50 =
1

𝑁 − 1

𝑁
∑

𝑖=1
(|𝑅𝑅𝑖 − 𝑅𝑅𝑖+1| > 50 ms) (8)

3.3. Correlation analysis

The Pearson correlation coefficients between each subject’s HRV
features and the personal ATS were calculated, provided that all HRV
features were smoothed using the moving average method by Eq. (9)
as follows before calculating the correlations. The correlation analysis
result is discussed in Section 5.1.

𝑋𝑡 =
∑𝑖=149

𝑖=−150 𝑋𝑡+𝑖

300
(9)

In Eq. (9), 𝑋𝑡 is a certain HRV feature at time 𝑡; 𝑋𝑡 is the smoothed
HRV feature at time 𝑡. The sliding time window was selected as 5 min
(300 s) to keep consistent with the sliding time window used in the
FFT-based method.

3.4. Multiple HRV feature sets

To analyze and compare the validity and benefits of the extracted
FFT, HT, and time-domain features for personal ATS assessment, mul-
tiple feature sets were defined as follows. First, the same to the corre-
lation analysis, all the HRV features were smoothed using the moving
average method using Eq. (9) before inputting to the regression model.
Second, the time-domain features were combined to form the Base
feature set (Base). Third, the FFT and HT features were combined
5

separately to form the FFT and HT feature sets (F and H). Finally, seven
feature sets were defined in total by different combinations of the Base,
FFT, and HT feature sets, as shown below.

• Base feature set (Base):
consisted of RRI, SDSD, RMSSD, and pNN50

• FFT feature set (F):
consisted of LFp, HFp, and LFp∕HFp

• HT feature set (H):
consisted of LFiA, HFiA, and LFiA∕HFiA

• Base and FFT feature set (BaseF):
consisted of Base and FFT feature sets

• Base and HT feature set (BaseH):
consisted of Base and HT feature sets

• FFT and HT feature set (FH):
consisted of FFT and HT feature sets

• Base, FFT and HT feature set (BaseFH):
consisted of Base, FFT, and HT feature sets

.5. Regression algorithm

Since the HRV indices are continuous values, correspondingly, finer
hermal sensations can provide more detailed information to the labels
or training the model. From this point of view, it may also be possible
o use finer discrete thermal sensations as labels by utilizing classifica-
ions. However, the more categories in the classification, the lower the
rediction accuracy will be obtained. Theoretically, if we use infinite
ategories in thermal sensation for classifications, the accuracy will
ecome zero at last. Based on this, it would be better to use continuous
hermal sensations as labels and use regression algorithms instead to
undamentally solve this problem.

In order to deal with the non-linear interactions between the SNS
nd PNS as well as the non-linear representations of the LFp∕HFp

and LFiA∕HFiA, we used the MLP regression algorithm to evaluate
the validity of each feature set defined in Section 3.4 to predict per-
sonal ATS since the MLP algorithm can account for non-linearities.
The MLP regression model was trained using the Python Scikit-learn
package. Optimal hyper-parameters of the MLP regression model were
obtained using the grid search technique for each subject. In the
MLP regression model, based on the fact that the hyper-parameter
’hidden_layer_sizes’ is usually selected as between half of the input size
and twice the input size, the most commonly used hyper-parameter can-
didates were selected as follows: ’hidden_layer_sizes’: [(6,), (8,), (10,),
(12,), (14,), (16,) (18,), (20,)], ’max_iter’=200, ‘activation’: [’tanh’,
‘relu’], ‘solver’: [’sgd’, ‘adam’], ‘alpha’: [0.0001, 0.05], ’learning_rate’:
[’constant’, ‘adaptive’]. The mean squared error (MSE) was used as the
metric.

The feature sets defined in Section 3.4 were used as the training
data after normalization, and the subjects’ ATS data were used as labels
for personal ATS regressions. Since this study is aimed at personal ATS
assessment, the data capacity is not large (2400 data points for each
subject). In order to make full use of the data, we carried out a 10-fold
blocked cross-validation as suggested by [56,57] without shuffling the
data since the data have time dependencies, in which each subject’s
data samples were segmented into ten equal-sized parts according to
time order. Next, by repeating the process of using nine parts as the
training set and using the remaining one as the test set, each part will
be used once as the test set and produce the corresponding prediction
result. By combining the prediction results generated from all test sets,
the entire prediction result can be obtained.

3.6. Novel continuous thermal sensation acquisition system

The 7-point Absolute Thermal Sensation Scale (7-point ATSS) pro-
posed in [11], with seven categories ‘‘very cold (−3)’’, ‘‘cold (−2)’’,
‘‘cool (−1)’’, ‘‘neutral (0)’’, ‘‘warm (+1)’’, ‘‘hot (+2)’’, ‘‘very hot (+3)’’ in
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Fig. 3. Overview system architecture of the proposed ATS prediction framework for an occupant-centered HVAC control system.
total, each category in which is called an Absolute Thermal Sensation
Vote (ATSV), was utilized by the subjects to gather real-time ATSVs.
The ‘‘cool’’, ‘‘neutral’’, ‘‘warm’’ ATSVs are defined to represent comfort-
able sensations, and the remains represent uncomfortably hot or cold
sensations. A laptop computer was used for the subjects’ real-time ATSV
input. The number keys ‘‘1’’, ‘‘2’’, ‘‘3’’, ‘‘4’’, ‘‘5’’, ‘‘6’’, and ‘‘7‘‘ represent
the ATSVs ’’very cold (−3)’’, ‘‘cold (−2)’’, ‘‘cool (−1)’’, ‘‘neutral (0)’’,
‘‘warm (+1)’’, ‘‘hot (+2)’’, ‘‘very hot (+3)’’, respectively.

An alarm clock program was installed on the laptop computer to
serve as a reminder for the ATSV input, ringing every 20 s. The subjects
were requested to confirm at least once whether the ATS had changed
or not when hearing the alarm. If the ATS has changed, the subjects
were requested to input the ATSV instantly. As this study considers the
ATS as continuous and focuses on real-time thermal comfort assessment
under transient thermal environments, it is necessary to obtain as many
thermal sensation details as possible. In fact, instead of inputting the
ATSV only when an alarm is heard, the subjects were asked to input the
ATSV whenever a change in their ATS occurs. The ATSVs were recorded
by a small keylogger program written by Python. The timestamps of the
recordings of the keyboard buttons have a resolution of 0.001 s.

3.6.1. ATS processing method
For the ATS processing method, the ATS between the experiment

start time and the first ATSV timestamp was considered to be the
same as the first ATSV; the ATS between the last ATSV timestamp
and the experiment end time was considered to be the same as the
last ATSV. Since the numerical interval between every two adjacent
ATSVs in the 7-point ATSS is the same (i.e., 1), e.g., ‘‘hot (+2)’’
minus ‘‘warm (+1)’’ equals 1, the ATSVs in the 7-point ATSS share a
linear relationship and the 7-point ATSS is considered a linear scale.
Therefore, linear interpolation was applied to the discrete ATSV data
owing to the continuous ATS assumption mentioned in Section 1 to
obtain the approximate continuous ATS, with a time interval of 1 s to
keep consistent with the time resolution of the HRV features. Based on
the above-mentioned procedure, the whole ATS can be obtained.

3.7. Overview system architecture

The overview system architecture of the ATS prediction framework
is illustrated in Fig. 3.

4. Experimental setup

We conducted the experiment at the environmental test lab of
Tokyo Gas Co., Ltd in winter (Feb 2020), which consists of an external
environment and an inner chamber, as illustrated in Fig. 4. The thermal
condition of the external environment is adjusted by an HVAC system,
which is equipped with a boiler, a chiller, and a humidity controller.
On the other hand, an air-conditioner is installed in the inner chamber
6

to heat or cool the inner chamber gradually. We utilized the air-
conditioner to create gradual heating and cooling phases in the inner
chamber. In addition, the inner chamber has a door equipped to allow
heat exchange through the external environment. As the volume of the
external environment is much larger than that of the inner chamber,
the external environment temperature (𝑇𝐸) variation can be neglected
when opening the door of the inner chamber to make heat exchange,
and the inner chamber temperature 𝑇𝐼 can be rapidly adjusted to 𝑇𝐸
approximately. We utilized this property to create a rapid cooling phase
in the inner chamber.

4.1. Thermal conditions

𝑇𝐸 and the relative humidity in the external environment were set to
18 ◦C and 50% throughout the experiment. Instead of steady-state ther-
mal environments, transient thermal environments were created in this
study by various operations of the HVAC system, the air-conditioner,
and the door. The door was kept open before the experiment to keep
the thermal condition of the inner chamber approximately equal to
the thermal condition of the external environment. Two temperature
scenarios were created in total, as illustrated in the following Sections.

4.1.1. Scenario I
The upper part of Fig. 5 illustrates the temperature control scheme

of Scenario I. First, close the door and turn on the air-conditioner to
make a 15-min-long gradual heating phase in the inner chamber with a
setpoint of 30 ◦C. This phase is long enough to make 𝑇𝐼 level off during
the latter half of the phase by sufficiently heating the inner chamber
for 15 min. Second, open the door and turn off the air-conditioner to
make a 5-min-long rapid cooling phase. Next, by repeating the first and
second phases, a periodic temperature signal with a period of 20 min
can be generated. The total duration of Scenario I was 40 min.

4.1.2. Scenario II
The lower part of Fig. 5 illustrates the temperature control scheme

of Scenario II. Similar to Scenario I, the first and third phases were
identical gradual heating phases by closing the door and turning on
the air-conditioner to heat the inner chamber with a setpoint of 30 ◦C.
The second phase is the same as the 5-min-long rapid cooling phases in
Scenario I. Different from Scenario I, the last phase in Scenario II was a
15-min-long gradual cooling phase by closing the door and turning on
the air-conditioner to cool the inner chamber with a setpoint of 18 ◦C
to keep consistent with the setpoint of the rapid cooling phases (i.e., 𝑇𝐸
= 18 ◦C). The 15-min-long gradual cooling phase was long enough to
ensure 𝑇𝐼 to be lowered approximately to 18 ◦C by the end of the
cooling phase. In addition, either gradual heating phase in Scenario II
was shortened to 10 min to keep the total duration of Scenario II to
40 min to keep consistent with Scenario I.
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Fig. 4. Schematic of the environmental test lab [11].
Fig. 5. Two temperature scenarios inside the inner chamber [11].
4.2. Experimental procedure

The specifications of the myBeat WHS-1 are shown in Table 1.
The myBeat WHS-1 has a sampling frequency of 1000 Hz. Fig. 6(a–
c) shows the front and back of the myBeat WHS-1, and the auxiliary
disposable ECG electrode (type: UIR). The back side of the disposable
ECG electrode has a viscous layer to keep the disposable ECG electrode
sticking on the skin tightly. The myBeat WHS-1 was connected to the
disposable ECG electrode and fixed on the subjects’ chest to measure
the RRIs. After the measurement, the irregularities (i.e., abnormally
high or low values) in the original RRIs yielded by the inaccurate
measurement of the device were removed manually.
7

Six subjects participated in the experiment in total. All of them were
male students (age: 𝜇: 25.0 years, 𝜎: 1.0 years, weight: 𝜇:72.5 kg, 𝜎:
13.0 kg, height: 𝜇: 177.3 cm, 𝜎: 7.0 cm) at the University of Tokyo.
Three students were randomly chosen and dispatched to Scenario I, and
the other three were dispatched to Scenario II.

Before the experiment, a desk and a chair were prepared in the
inner chamber for the subjects to simulate sedentary office activities.
The laptop computer for the subjects’ ATSV input was placed on the
desk. The desk and chair were placed not to directly confront the
airflow from the air-conditioner or the door, as shown in Fig. 4. During
the experiment, the subjects were requested to sit down on the chair
and press the keyboard buttons to input the ATSV (small range of
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Fig. 6. The heartbeat sensor myBeat WHS-1: (a) front, (b) back, (c) the auxiliary disposable ECG electrode (type: UIR), (d) the mounting state of the myBeat WHS-1 on a male
subject’s chest.
Table 1
Specifications of the myBeat WHS-1.

Features Descriptions

Dimensions 40.8 mm × 37.0 mm × 8.9 mm
Weight 13 g
Battery Coin type lithium-ion battery
Memory 7-day measurement
Sampling frequency 1000 Hz
Price $394

Accuracy
Input ECG 60 bpm 120 bpm

Mean error −0.0787 ms −0.0720 ms
Standard error 1.98 ms 2.08 ms

motions allowed). The subjects were requested to wear the same clothes
(black short sleeves, trousers, and cotton socks) provided by us during
the experiment. The subjects were requested to put their hands on
their thighs when not pressing the keyboard. Furthermore, a thermal
insulation pad was placed directly under the desk on the floor for the
subjects’ feet to prevent unnecessary conductive heat loss through the
floor. The subjects were requested to perform hair removal on their
chest before the experiment. During the preparation time (20 min),
we fixed the myBeat WHS-1 onto the subjects’ chest as illustrated in
Fig. 6(d). The subjects were required to use the left hand to input the
ATSV as the right hand was adhered with thermocouples by medical
tapes in order to measure the skin temperatures. The subjects were
confirmed whether their current ATS was unchanging or not (whether
the RTS is ‘‘no change’’ or not) for preparation before the experiment to
maintain a steady-state thermal sensation. Fig. 7 shows a male subject
and the mounting state of the experimental devices.

The ambient air temperature was measured by a pair of Type 𝑇
thermocouples (copper-constantan) per s placed 60 cm above the floor
near the subject with accurate temporal synchronization and recorded
by a data logger (Midi LOGGER GL840: accuracy: ±0.5 ◦C, resolution:
0.01 ◦C), as shown in Fig. 7. The subjects were not aware of the opening
and closing of the door and the operations of the air-conditioner and
were requested to input the ATSV according to subjective thermal
feelings. The Research Ethics Committee of the University of Tokyo
approved the experiment.
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5. Results and discussion

Table 2 summarizes the total duration of each ATS category of each
subject by rounding the interpolated ATS to the nearest whole numbers.
Significant individual differences can be observed among the subjects
as shown in Table 2. In Scenario I, subject 3 only had the ‘‘cold’’, ‘‘cool’’,
‘‘neutral’’, and ‘‘warm’’ ATS throughout the experiment but lacked the
‘‘very cold’’, ‘‘hot’’, or ‘‘very hot’’ ATS. In Scenario II, subjects 4 and 5
had no ‘‘very hot’’ ATS throughout the experiment.

5.1. Correlation analysis result

Table 3 shows the Pearson correlation coefficients between each
subject’s HRV features and the personal ATS. In Table 3, the absolute
values of Pearson correlation coefficients more than 0.30 (more than
moderate correlation) are shown in bold font.

As can be observed in Table 3, for either the FFT or HT features,
all subjects have 14 features that have moderate or strong linear
correlations with the ATS in Scenarios I and II in total. Therefore, it
is concluded that both the FFT and HT features can be relevant for
thermal comfort modeling.

For the RRI, significant Individual differences can be observed that
for subjects 1, 2, 3, and 6, the RRI highly correlates with the ATS,
whereas, for subjects 4 and 5, the RRI only shows a weak correlation
with the ATS. For the pNN50, significant individual differences can be
observed that the pNN50 has a correlation with the ATS more than
moderate for subjects 1, 4, 5, and 6 but nearly uncorrelated with the
ATS for subjects 2 and 3.

Also, it is noteworthy that the HFp and LFiA show a correlation
with the ATS more than moderate for all subjects, indicating that these
frequency-domain features are more robust for ATS modeling than the
time-domain features.

5.2. Data visualization

Figs. 8 and 9 show the FFT features, HT features, and time-domain
features of two subjects from Scenarios I and II after smoothing and
normalization, respectively. In Figs. 8 and 9, the thick blue line indi-
cates the air temperature; the black circles indicate the original ATSVs;
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Fig. 7. The mounting state of the experimental devices on a male subject [11].
Table 2
Total duration (s) of each subject’s each ATS category.
Scenario Subject ID ATS

very cold (−3) cold (−2) cool (−1) neutral (0) warm (+1) hot (+2) very hot (+3)

I
1 226 423 183 288 570 464 246
2 543 277 98 184 599 675 24
3 NaN 1002 453 658 287 NaN NaN

II
4 36 747 306 504 525 282 NaN
5 482 453 145 202 937 181 NaN
6 43 304 331 447 449 370 456
the green dashed line indicates the interpolated ATS label. In Figs. 8(a,
b) and 9(a, b), the light blue lines indicate the LFp and LFiA; the orange
lines indicate the HFp and HFiA; the green lines indicate the LFp∕HFp
and LF ∕HF . In Figs. 8(c) and 9(c), the light blue line indicates the
9

iA iA
RRI; the orange line indicates the SDSD; the green line indicates the
RMSSD; and the red line indicates the pNN50.

In Figs. 8 and 9, many obvious correlations can be observed between
the FFT, HT, and time-domain HRV features and the ATS, indicating
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Table 3
The Pearson correlation coefficients between personal ATS and HRV features.
HRV feature category Scenario

I II

Subject ID

1 2 3 4 5 6

FFT features
LFp −0.21 0.58 0.21 −0.57 0.31 −0.67
HFp −0.58 −0.72 0.45 −0.65 −0.80 −0.67
LFp∕HFp 0.61 0.88 −0.40 −0.25 0.51 0.12

HT features
LFiA −0.50 0.40 0.48 −0.58 0.41 −0.61
HFiA −0.72 −0.45 0.15 −0.53 −0.37 −0.61
LFiA∕HFiA 0.51 0.64 0.27 0.01 0.76 0.05

Time-domain features

RRI −0.90 −0.90 0.68 0.24 −0.23 −0.84
SDSD −0.61 −0.15 0.39 −0.65 0.09 −0.67
RMSSD −0.73 −0.86 0.21 −0.76 −0.51 −0.79
pNN50 −0.70 −0.04 −0.02 −0.71 −0.54 −0.61
Fig. 8. Air temperature, original ATSVs, ATS label, normalized FFT features (a), HT features (b), and time-domain features (c) (Scenario I & subject 1). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
that it is reasonable to use the FFT, HT, and time-domain features for
ATS modeling, which agrees with the correlation analysis illustrated in
Section 5.1.

5.3. Personal ATS assessment

Table 4 shows the average MSE and coefficient of determination
(R2) of personal ATS predictions using the seven feature sets defined in
Section 3.4. As can be observed in Table 4, for both the average MSE
and R2 of all subjects in Scenarios I and II, significant results can be
summarized as follows.

1. The BaseF feature set outperformed both the Base and F feature
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sets.
2. The BaseH feature set outperformed both the Base and H feature
sets.

3. The FH feature set outperformed both the F and H feature sets.
4. The BaseFH feature set outperformed all the other feature sets.

Moreover, the BaseFH feature set reached the lowest average MSE
of 0.76, 0.09 lower than the second-lowest obtained by the BaseH
feature set, and reached the highest average R2 of 0.73, 0.04 higher
than the second-highest obtained by the BaseF and BaseH feature sets.
Therefore, it is concluded that the HT is no weaker than the FFT
in the frequency-domain HRV feature extraction for ATS modeling,
which agrees with [47] and the correlation analysis result mentioned in
Section 5.1, and it is feasible to combine the FFT, HT, and time-domain
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Fig. 9. Air temperature, original ATSVs, ATS label, normalized FFT features (a), HT features (b), and time-domain features (c) (Scenario II & subject 4). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Personal ATS prediction (BaseFH feature set) (Scenario I & Subject 1).
Fig. 11. Personal ATS prediction (BaseFH feature set) (Scenario II & Subject 4).
features together to significantly enhance personal ATS assessment,
which could be utilized to build a wearable thermal comfort assessment
framework since only one portable and non-intrusive heartbeat sensor
is required and contribute to energy conservation in buildings through
intelligent HVAC control using the framework.
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Figs. 10 and 11 show the ATS predictions using the BaseFH feature
set of the two subjects we mentioned before from Scenarios I and
II, respectively. In Figs. 10 and 11, the prediction curves generated
by the BaseFH feature set track the ATS labels fairly well, indicating
the validity of the continuous ATS assumption. As can be observed in
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Table 4
Performance metrics of personal ATS predictions in Scenarios I and II for each HRV
feature set.

Scenario Subject ID Feature set

Base F H BaseF BaseH FH BaseFH

MSE

I

1 0.84 3.97 2.45 0.71 0.96 1.14 0.58
2 0.65 0.53 3.38 0.52 0.48 0.60 0.41
3 0.53 1.47 1.15 0.42 0.55 1.42 0.35

Avg. 0.68 1.99 2.33 0.55 0.66 1.05 0.44

II

4 0.84 3.97 2.45 0.71 0.96 1.14 0.58
5 0.65 0.53 3.38 0.52 0.48 0.60 0.41
6 0.53 1.47 1.15 0.42 0.55 1.42 0.35

Avg. 1.22 2.00 1.97 1.19 1.05 1.66 1.08

Avg. (all) 0.95 2.00 2.15 0.87 0.85 1.36 0.76

R2

Scenario Subject ID Feature set

Base F H BaseF BaseH FH BaseFH

I

1 0.79 0.00 0.38 0.82 0.76 0.71 0.85
2 0.86 0.88 0.26 0.89 0.90 0.87 0.91
3 0.54 −0.28 0.01 0.64 0.53 −0.23 0.70

Avg. 0.73 0.20 0.22 0.78 0.73 0.45 0.82

II

4 0.72 0.18 0.18 0.72 0.77 0.31 0.72
5 0.60 0.57 0.47 0.62 0.61 0.57 0.65
6 0.48 0.16 0.28 0.47 0.59 0.38 0.55

Avg. 0.60 0.30 0.31 0.61 0.66 0.42 0.64

Avg. (all) 0.66 0.25 0.26 0.69 0.69 0.43 0.73

Figs. 10 and 11, the air temperature during both first rapid cooling
phases was no higher than that at the beginning of the experiment.
However, in Fig. 10, the subject felt ‘‘cool’’ at the beginning of the
experiment but felt ‘‘very cold’’ in the first rapid cooling phase; in
Fig. 11, the subject felt ‘‘neutral’’ at the beginning of the experiment but
felt ‘‘cold’’ in the rapid cooling phase, indicating the context-dependent
property of the ATS, i.e., the ATS is not monotonically determined by
the current temperature but can also be influenced by the previous
context, and the proposed models track the ATS fluctuations caused
by the context-dependent property fairly well in the transient thermal
environments, especially in Fig. 10. In Fig. 10, in the first rapid cooling
phase, the air temperature abruptly dropped due to the effect of open-
ing the door and continuously decreased with a small slope. However,
the subject’s ATS got a transition from ‘‘very cold’’ to ‘‘cold’’ during
this period. Obviously, our model can even track this transition very
well, indicating the validity of the proposed HRV features for personal
ATS assessment in the transient thermal environments. As shown in
Figs. 10 and 11, since the ATS > +1 denotes uncomfortably hot state,
if the period of ATS > +1 could be accurately predicted, it would be
better to stop heating the room in advance in order not to run into
uncomfortably hot state, not only the occupant’s thermal comfort can
be assured, but energy can also be saved. The same to the situation of
ATS < −1.

5.4. Limitations

This study has some limitations. Firstly, though both the rapid
and gradual cooling phases and the gradual heating phase were in-
vestigated, the rapid heating phase was not investigated in this study.
Secondly, the thermal comfort assessment method for the subjects was
investigated in sedentary office activities. The verification in exercise
conditions requires further investigation in the future work. Thirdly,
though attaching the heartbeat sensor onto the chest is not disturbing,
wrist watches could be alternatives for heartbeat measurement in the
future work. Finally, as this study is focused on the personalized
assessment of thermal comfort and belongs to non-statistical analysis,
a relatively small subject sample size (six subjects) was adopted. Even
though the results are significant, a larger subject sample size would
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enhance the validity of the results.
6. Conclusions

In this paper, personal thermal sensation is defined as a continuous
function of time, and its validity has been verified. The feasibility of
using HRV features for the subjects’ personal ATS assessment during
sedentary office activities has been verified in transient thermal en-
vironments. It has been revealed that it is appropriate to use both
the FFT and HT to perform frequency-domain HRV feature extraction
for ATS modeling. All of the FFT, HT, and time-domain features have
been shown to be relevant for ATS modeling. It has been verified that
combining the HT features and other HRV features together can boost
personal thermal comfort prediction accuracy. It is feasible to combine
the FFT, HT, and time-domain features together to obtain the best
ATS prediction. By combining the FFT, HT, and time-domain features
together for personal ATS predictions, the average MSE reached the
lowest among all seven feature sets. For the ATS prediction using
the BaseFH feature set, the average R2 reached 0.73 in Scenarios I
and II. The frequency-domain HRV features HFp and LFiA show a
correlation with the ATS more than moderate for all subjects, indicating
that these frequency-domain features show a more robust relevance to
the ATS than the time-domain features. Also, the context-dependent
property of the ATS has been demonstrated and discussed. The ATS
is not monotonically determined by the current temperature but can
also be influenced by the previous context. Since the heartbeat mea-
surement only requires a portable and non-intrusive heartbeat sensor,
this study facilitates practical applications for wearable thermal com-
fort assessment frameworks and contributes to energy conservation in
buildings.
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