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ABSTRACT 
Buildings consume a huge amount of energy and 

mainly utilize it for occupants' thermal comfort 
satisfaction. Real-time thermal comfort assessment can 
enormously contribute to thermal comfort optimization 
and energy conservation in buildings. Existing thermal 
comfort models mainly focus on the real-time 
assessment of occupants' current thermal comfort. 
However, in the transient thermal environment, 
occupants' thermal comfort is unsteady and varies from 
time to time. Therefore, if we only assess occupants' 
current thermal comfort, prediction error will be elicited. 
In order to address this problem, it is principally 
important to comprehend occupants' real-time thermal 
sensation trend in the transient thermal environment. 
This study investigates a novel thermal sensation index 
that can directly represent an individual's current 
thermal sensation trend. By incorporating the novel 
thermal sensation index into an ordinary thermal 
comfort model, a composite thermal comfort model is 
derived, which can simultaneously address an 
individuals' current thermal comfort and current thermal 
sensation trend. Then, by utilizing a machine learning 
classification algorithm, we propose its intrusive 
assessment method using skin or clothing temperatures 
of ten local body parts measured by thermocouple 
thermometers and its non-intrusive assessment method 
using a low-cost portable infrared camera. The novel 
composite thermal comfort model can provide an early 
warning mechanism for thermal discomfort and 
contribute to energy conservation in buildings. 
 
Keywords: thermal comfort, energy conservation, 
physiological index, infrared thermography, machine 
learning 
 

NOMENCLATURE 

Abbreviations  

RTS Relative Thermal Sensation 

3-point RTSS 
3-point Relative Thermal Sensation 
Scale 

RTSV Relative Thermal Sensation Vote 
ATS Absolute Thermal Sensation 

7-point ATSS 
7-point Absolute Thermal Sensation 
Scale 

ATSV Absolute Thermal Sensation Vote 
3-point TCS 7-point Thermal Comfort Scale 
TCL Thermal Comfort Level 

9-point TTCS 
9-point Transient Thermal Comfort 
Scale 

TTCL Transient Thermal Comfort Level 
MLP Multilayer Perceptron 
LBPT Local body part temperatures 
DRTP Dimension-reduced thermal profiles 

 

1. INTRODUCTION 
Buildings account directly and indirectly for over one-

third of global final energy consumption [1], a large 
proportion of which (more than 50%) is used for thermal 
comfort maintenance through the Heating, Ventilation, 
and Air-conditioning (HVAC) systems. Real-time thermal 
comfort assessment is not only essential in constructing 
the control module of the HVAC system but also rather 
critical in energy conservation in buildings. 
   Existing thermal comfort models mainly focus on the 
assessment of occupants' current thermal comfort [2,3]. 
However, in the transient thermal environment, 
occupants' current thermal comfort is not stable and 
varies from time to time [4,5]. For instance, in winter, 
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suppose an occupant comes back home and turns on the 
heating system to create a cozy environment. After 
heating the house for a while, the occupant may feel 
comfortably warm. Meanwhile, if the power of the 
heating system is too high, even though the occupant's 
current thermal comfort is "comfortable," the occupant's 
thermal sensation may become warmer and warmer. 
Therefore, it is reasonable to infer that the occupant will 
likely fall into an uncomfortably hot state if the heating 
system continues working. In that case, it would be 
better to lower the power of the heating system in 
advance to prevent the occupant from running into an 
uncomfortably hot state. If the occupant's thermal 
sensation trend can be accurately assessed, not only can 
thermal discomfort be predicted in advance, but energy 
can also be saved. 
   In order to address this concern, in this paper, we 
present a composite thermal comfort model by 
introducing a novel thermal sensation index into an 
ordinary thermal comfort model. 

2. METHODOLOGY 

2.1 Relative Thermal Sensation 

In this study, the thermal sensation is considered to 
be a first-order differentiable function ( )f t  of time t , 

where ( ) 0f t   denotes hot sensation, ( ) 0f t   

denotes cold sensation, ( ) 0f t =  denotes neutral 

sensation. The larger its absolute value ( )f t , the 

greater the degree of hotness or coldness. The first-order 
derivative of ( )f t , describing the trend of the thermal 

sensation, is precisely defined as the Relative Thermal 
Sensation (RTS) in this study. Next, the 3-point Relative 
Thermal Sensation Scale (3-point RTSS) is defined to be 
discrete and consists of three categories "hotter" (+1), 
"no change" (0), and "colder" (-1), each category in which 
is called a Relative Thermal Sensation Vote (RTSV). The 
RTSV is defined as "hotter" when the occupant is 
currently feeling hotter than the latest thermal sensation 
( ( ) 0f t  ); the RTSV is defined as "colder" when the 

occupant is currently feeling colder than the latest 
thermal sensation ( ( ) 0f t  ); when the occupant's 

current thermal sensation does not change compared 
with the latest thermal sensation (neither "hotter" nor 
"colder," when ( ) 0f t = ), the RTSV is defined as "no 

change." By such a definition, the RTS forms another 
dimension of thermal comfort, and it can serve as a 
complementary thermal sensation index for traditional 
thermal comfort models. 

2.2 Composite thermal comfort model 

In this study, to better distinguish from the RTS and 
the 3-point RTSS, we denominated the thermal sensation 
in the common sense as the Absolute Thermal Sensation 
(ATS). By such a definition, the thermal sensation is 
decomposed into two categories: ATS and RTS. 
Moreover, we define the 7-point Absolute Thermal 
Sensation Scale (7-point ATSS) consists of seven 
categories "very cold" (-3), "cold" (-2), "cool" (-1), 
"neutral" (0), "warm" (+1), "hot" (+2), and "very hot" 
(+3), each category in which is called an Absolute 
Thermal Sensation Vote (ATSV). In the 7-point ATSS, the 
"cool," "neutral," and "warm" votes are defined to 
represent comfortable sensations; the "hot" and "very 
hot" votes are defined to represent uncomfortably hot 
sensations; the "cold" and "very cold" votes are defined 
to represent uncomfortably cold sensations. 
Consequently, the 3-point Thermal Comfort Scale (3-
point TCS) can be derived from the 7-point ATSS. The 3-
point TCS has three categories "hot" (+3), "cozy" (0), and 

"cold" (-3), each category in which is called a Thermal 
Comfort Level (TCL). 

By incorporating the 3-point RTSS into the 3-point 
TCS (combine each category in the 3-point RTSS with 
each category in the 3-point TCS), we can obtain the 9-
point Transient Thermal Comfort Scale (9-point TTCS), 
which is a composite real-time thermal comfort model 
and can describe an individual's current thermal comfort 
and current thermal sensation trend simultaneously, as 
described in Fig. 1. The 9-point TTCS has nine categories 
"hot to hot" (+4), "hot" (+3), "hot to cozy" (+2), "cozy to 
hot" (+1), "cozy" (0), "cozy to cold" (-1), "cold to cozy" (-
2), "cold" (-3), "cold to cold" (-4), each category in which 
is called a Transient Thermal Comfort Level (TTCL). 

In the 9-point TTCS, the "hot to hot" and "cold to 
cold" TTCLs indicate an individual's hot or cold 
discomfort degree will aggravate in the future; the "hot 
to cozy" and "cold to cozy" TTCLs indicate an individual's 
hot or cold discomfort degree will alleviate in the future; 

 
Fig. 1 9-point TTCS by incorporating the 3-point RTSS into 

the 3-point TCS 
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the "cozy to hot" and "cozy to cold" TTCLs indicate an 
individual tends to feel uncomfortably hot or cold in the 
future. 

2.3 Novel thermal sensation voting system 

  The subjects were requested to input the real-time 
ATSVs and RTSVs through a laptop. The number keys "1," 
"2," "3," "4," "5," "6," and "7" correspond to the ATSVs 
"very cold," "cold," "cool," "neutral," "warm," "hot," and 
"very hot," respectively. The arrow keys "up" and "down" 
correspond to the RTSVs "hotter" and "colder," 
respectively, as illustrated in Fig. 2. The subjects should 
input either the ATSV or RTSV at least once when hearing 
an alarm that rings every 20 sec. The priority of the ATSV 
is higher than the RTSV. Moreover, in order to gather as 
many thermal sensation details as possible, the subjects 
were encouraged to input the ATSV and RTSV whenever 
they felt a change in their thermal sensation. The 
"hotter" and "colder" RTSVs were regarded to sustain 20 

sec after the input when there is no successive "hotter" 
or "colder" RTSV within 20 sec. The "no change" RTSV 
was not set as an active vote to alleviate the mental 
burden. Time periods with no "hotter" or "colder" RTS 
were regarded as the "no change" RTS periods. 

2.4 Intrusive and non-intrusive body surface 
temperature measuring methods 

As is known to all, intuitively, people tend to feel 
hotter when the air temperature is ascending, while they 
tend to feel colder when the air temperature is 
descending. However, the real-time RTS could be much 
more complicated than simply judging by the air 
temperature. We hypothesized that it is possible to 
assess the RTS by analyzing the body surface 
temperatures of several local body parts or the thermal 
images of the body surface. We measured the local body 
part temperatures (LBPT) of ten locations, including the 
forehead, the upper chest, the lateral arm, the dorsum 
of the hand, the abdomen, the scapular blade, the 
anterior thigh, the fibular shin, the posterior wrist, and 
the dorsum of the foot in an intrusive way using 

thermocouple thermometers (Accuracy: ±0.5℃). Also, 
we utilized a low-cost portable infrared camera FLIR ONE 
Pro ($375) to cover the subjects' upper body surface 
infrared radiation in a non-intrusive manner. Both the 
LBPT and the thermal images were taken per sec. 

2.5 Feature extraction and feature engineering for RTS 
and TCL assessments by classification algorithm 

We used an instance segmentation algorithm 
(YOLACT++ [6]) to remove the background surrounding 
the subjects' thermal profiles in the thermal images and 
applied dimensionality reduction to the background-
removed thermal profiles using the UMAP [7] to perform 
feature extraction and obtain the dimension-reduced 
thermal profiles (DRTP) (from 160×120 to 10). Then, we 
used the LBPT and the DRTP for personal TCL modeling, 
separately. Since the RTS is the gradient of the ATS, 
reasonably, we used the LBPT and the gradients of LBPT 
as well as the DRTP and the gradients of DRTP for 
personal RTS modeling, separately. Five-fold blocked 
cross-validation was carried out to predict personal RTS 
and TCL using the Multilayer Perceptron (MLP) classifier 
since the data have time dependencies according to [8]. 
Optimal hyper-parameters were obtained using the grid 

 
Fig. 2 Keyboard layout for ATSV and RTSV input 

 
Fig. 3 Overview of the proposed individual TTCL assessment framework for an occupant-centered HVAC control system. 
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search technique. Fig. 3 illustrates the TTCL assessment 
framework using the above-mentioned intrusive and 
non-intrusive methods for an occupant-centered HVAC 
control system. 

3. EXPERIMENTAL SETUP 
   The experiment was conducted in the environmental 
test lab of Tokyo Gas Co., Ltd, which consists of an 
external environment and an inner chamber, as 
illustrated in Fig. 4. Six male students (age 25 ± 1 years) 
at the University of Tokyo participated in the experiment. 
By various operations of the HVAC system and the door, 
two Scenarios were created to test the RTS and ATS 
performance under such thermal conditions, as 
illustrated in Fig. 6. Three subjects were randomly 
selected and dispatched to Scenario I, and the other 
three were dispatched to Scenario II. 

   A laptop for ATSV and RTSV input was set on a desk 
in front of a chair. The desk and the chair were arranged 

not to directly face the airflow from the air-conditioner 
of the door, as illustrated in Fig. 4. The subjects were 
requested to wear the same clothes provided by us 
(black short sleeves, trousers, and cotton socks), sit down 
on the chair, and press the keyboard buttons to input the 
ATSV and RTSV during the experiment to simulate 
sedentary office activities (small range of motion 
allowed), as shown in Fig. 5. 

4. RESULTS AND DISCUSSION 

4.1 Visualization of the LBPT, DRTP, RTSVs and ATSVs 

Fig. 7 and Fig. 8 show the representative data of two 
subjects from Scenarios I and II, respectively. In both Fig. 
7 and Fig. 8, during "hotter" periods, the shin 

temperature is higher than the abdomen temperature, 

 
Fig. 4 Schematic of the environmental test lab. 

 
Fig. 6 Temperature control schemes of the inner chamber. 

 
Fig. 5 A male subject and the mounting state of the 

experimental apparatus. 

            
   

             

                     

         
       

            
           

      

             
                 

          
      

 
Fig. 7 Shin, abdomen, and air temperatures, original 
ATSVs and RTSVs, first two UMAP components, and 
smoothed first two UMAP components (Scenario I & 

subject 1). 

 
Fig. 8 Shin, abdomen, and air temperatures, original 
ATSVs and RTSVs, first two UMAP components, and 

smoothed first two UMAP components (Scenario II & 
subject 4). 
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whereas during "colder" periods, the shin temperature is 
lower than the abdomen temperature, indicating that it 
could be reasonable to use the LBPT for RTS modeling. 
During "hotter" periods, the shin and abdomen 
temperatures tend to be ascending, whereas during 
"colder" periods, they tend to be descending, indicating 
that it could be reasonable to use the gradients of the 
LBPT for RTS modeling. For the DRTP, in Fig. 8, during 
"hotter" periods, the smoothed first two UMAP 

components occupy lower ranges; during "colder" 
periods, they occupy higher ranges. In Fig. 7, during 
"hotter" periods, the second smoothed UMAP 
component occupies a higher range and occupies a lower 
range during "colder" periods, indicating that it could be 
reasonable to use the DRTP for RTS modeling. However, 
different from the LBPT, the first smoothed UMAP 
component in Fig. 7 does not satisfy this pattern since 
the UMAP is a non-linear process.  

 
Fig. 10 Prediction of the RTS, TCL, and TTCL (Scenario II & subject 4) 

 
Fig. 9 Prediction of the RTS, TCL, and TTCL (Scenario I & subject 1) 
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4.2 Thermal discomfort early warning mechanism of the 
TTCL 

Table 1 shows the mean accuracy of the TTCL 
predictions in Scenarios I and II integrated by the RTS 
predictions and the TCL predictions using LBPT feature 
sets or DRTP feature sets. The LBPT feature set reached 
mean accuracies of 0.57 and 0.51 in Scenarios I and II, 
respectively; the DRTP feature set reached mean 
accuracies of 0.45 and 0.41 in Scenarios I and II, 
respectively. Since the number of classes is relatively 
large (nine), the prediction result is not bad. 

Fig. 9 and Fig. 10 show the RTS predictions, TCL 
predictions, and the integrated TTCL predictions using 
the LBPT or DRTP feature sets of two subjects from 
Scenarios I and II, respectively. For instance, in Fig. 9, in 
the first gradual heating phase, during 400-550 sec, the 
subject's TCL was still "cozy" while feeling "hotter," the 
TTCL was mainly "cozy to hot" and was successfully 
predicted using the LBPT feature set; in Fig. 10, in the 
gradual cooling phase during 1700-1850 sec, the 
subject's TCL was still "cozy" after turning on the cooling 
mode of the air-conditioner and finally reached "cold," 
the TTCL was mainly "cozy to cold" and was successfully 
predicted using both LBPT and DRTP feature sets. The 
significance of the TTCL is that "cozy to hot" and "cozy to 
cold" TTCLs can generate thermal discomfort early 
warning mechanisms. In such cases, it is better to turn 
down the heater/chiller in advance to prevent it from 
running into "hot" or "cold" TCLs. Not only can thermal 
comfort be maintained, but energy can also be saved. 

Moreover, the significance of the TTCL is that "hot to 
hot" and "cold to cold" TTCLs can generate thermal 
discomfort deterioration prevention mechanisms that 
can prevent occupants' current thermal comfort from 
deteriorating. For instance, in Fig. 9, in the first gradual 
heating phase during 1600-1800 sec, the subject's TTCL 
was mainly "hot to hot" and was successfully predicted 
using the LBPT feature set; in Fig. 9, in the gradual 
heating phase during 2150-2250 sec, the subject's TTCL 
was mainly "cold to cold" and was successfully predicted 
using both LBPT and DRTP feature sets. 

Furthermore, our RTS models have the ability to 
predict some fine details of the RTS, indicating the 

validity of the RTS models. For example, in Fig. 9, during 
1780-2050 sec, the RTS fine details were well predicted 
by the DRTP feature set; in Fig. 10, during 850-950 sec, 
the fine details of the RTS were well predicted by the 
LBPT feature set. 

5. CONCLUSION 
This work investigates a novel composite thermal 

comfort model that simultaneously addresses the 
occupants' current thermal comfort and the current 
thermal sensation trend. This pilot study facilitates 
practical applications for thermal discomfort early 
warning/deterioration prevention systems and 
contributes to energy conservation in buildings. 
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I 0.57 0.45 

II 0.51 0.41 
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