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ABSTRACT Real-time thermal comfort evaluation is not only essential in constructing the control module of
Heating, Ventilation and Air Conditioning (HVAC) systems in residential buildings but also rather critical in
energy conservation. In the transient thermal environment, current thermal comfort is not stable and varies
from time to time. Therefore, if we only evaluate the current thermal sensation that will cause prediction
error. Existing thermal comfort models mainly focus on the evaluation of current thermal comfort. However,
research on the evaluation of thermal sensation variation trend is vacant. Furthermore, since individual
differences play an important role in thermal comfort evaluation, physiological indices should be considered.
To solve this problem, in this paper, the authors exclusively propose the concept of relative thermal sensation
which accounts for the thermal sensation variation trend and give its real-time evaluation method by analysis
of skin/clothes temperatures of ten local body segments using machine learning algorithms. By incorporating
the relative thermal sensation model with an ordinary thermal comfort model, a novel complex thermal
comfort model is derived, which has the ability to predict the current thermal comfort and the thermal
sensation variation trend simultaneously and provides an early warning mechanism for thermal discomfort.

INDEX TERMS Thermal comfort evaluation, HVAC control, physiological index, skin temperature,
transient thermal environment, relative thermal sensation, individual difference, machine learning, energy
conservation.

NOMENCLATURE
TSV Thermal Sensation Vote
RTS Relative Thermal Sensation
3-point RTSS 3-point Relative Thermal Sensation Scale
RTSV Relative Thermal Sensation Vote
ATS Absolute Thermal Sensation
7-point ATSS 7-point Absolute Thermal Sensation Scale
ATSV Absolute Thermal Sensation Vote
3-point TCS 3-point Thermal Comfort Scale
TCL Thermal Comfort Level
9-point TTCS 9-point Transient Thermal Comfort Scale
TTCL Transient Thermal Comfort Level
HVAC Heating, Ventilation and Air Conditioning
ASHRAE American Society of Heating, Refrigerat-

ing and Air-conditioning Engineers
MLP Multi-layer Perceptron
RF Random Forest
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I. INTRODUCTION
A. THERMAL COMFORT EVALUATION BY PHYSIOLOGICAL
INDICES
Thermal comfort evaluation has become a hot topic in
recent years. The ASHRAE Standard 55-2017 [1], pub-
lished by the American Society of Heating, Refrigerating
andAir-Conditioning Engineers (ASHRAE), defined thermal
comfort as ‘‘the condition of mind that expresses satisfaction
with the thermal environment and is assessed by subjective
evaluation’’ [1].

Thermal comfort evaluation is essential in optimizing
thermal comfort and constructing the control module of
Heating, Ventilation and Air Conditioning (HVAC) sys-
tems in residential buildings and rather critical in energy
conservation [2]–[4]. Empirical formulas based models such
as the Precited Mean Vote/Predicted Percentage of Dissat-
isfied (PMV/PPD) method [5]–[9] have the ability to pre-
dict the averaged thermal comfort over a large majority of
people. However, the PMV/PPD method lacks the ability
to account for individual differences. Physiological factors,
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including local body temperatures [10]–[13], heart rate vari-
ability (HRV) [14]–[17], pupil dilation [18], [19], et cetera,
have been proved to have substantial impacts on thermal
comfort, which are essential in establishing personalized ther-
mal comfort models. Nowadays, with the rapid developing
speed of technology, physiological measurement is becoming
easier and easier, and the cost is becoming lower and lower.
For example, the human body surface temperature can be
measured by portable and low-cost infrared cameras. Many
existing studies have investigated to use infrared thermogra-
phy to measure body surface temperature to make thermal
comfort evaluations [20]–[23].

B. TRANSIENT-STATE THERMAL COMFORT ANALYSIS
Many existing studies have focused on steady-state thermal
comfort evaluation [24]–[27]. However, in the real world,
people often encounter thermal discomfort under transient
thermal environments rather than steady-state thermal con-
ditions [21], [28], [29]. Steady-state thermal comfort mainte-
nance is relatively easy. For instance, suppose an occupant
feels uncomfortable under steady-state thermal conditions.
In that case, there is a high possibility that he/she would
simply adjust the indoor temperature according to subjec-
tive thermal sensation through the air-conditioner and finally
reach a comfortable state. However, when people are in
transient thermal environments, the thermal sensation is not
stable and varies from time to time, thus following the current
thermal sensation to control the HVAC system is not reli-
able. For instance, suppose an occupant walks into a sauna
room, he/she might feel comfortably warm at first. How-
ever, as time goes by, the occupant might feel uncomfortably
hot at last. Oppositely, suppose an occupant is walking out
from a well-heated house in the winter season, the occupant
may feel comfortably cool at first. However, as time goes
by, he/she may finally feel uncomfortably cold. Therefore,
transient-state thermal comfort evaluation becomes much
more important and challenging than steady-state thermal
comfort evaluation.

For transient-state thermal comfort analysis, Li et al. [30]
developed a thermal comfort model based on facial skin tem-
perature measured by infrared thermography under heating
(22 ◦C-28 ◦C) and cooling (28 ◦C-22 ◦C) conditions. Choi
and Yeom [12] developed a thermal comfort model based on
skin temperatures of local body segments measured by an
exposed thermistor type sensor under heating (20 ◦C-30 ◦C)
and cooling (30 ◦C-20 ◦C) conditions. However, the air tem-
perature change rates in these studies were too low to sim-
ulate a transient thermal environment, e.g., 1 ◦C/10 minutes
[12], [30], resulting in a reasonable doubt on the fast response
capability of these thermal comfort models under rapid air
temperature change scenarios.

C. LIMITATIONS OF THE ASHRAE 7-POINT THERMAL
SENSATION SCALE
Thermal Sensation Vote (TSV), is the vote on thermal sen-
sations reported by people. The ASHRAE Standard 55 [1],

FIGURE 1. Schematic of the overload situation of the ASHRAE 7-point
thermal sensation scale.

[29], [31], [32] defined 7-point thermal sensation scale has
seven categories starts from −3 to +3, corresponding to
‘‘cold,’’ ‘‘cool,’’ ‘‘slightly cool,’’ ‘‘neutral,’’ ‘‘slightly warm,’’
‘‘warm,’’ and ‘‘hot.’’

Two problems appear here. First, since the
ASHRAE 7-point thermal sensation scale has an upper limit
(+3) and a lower limit (−3), when the real thermal sensation
exceeds the upper limit or the lower limit, the ASHRAE 7-
point thermal sensation scale will be overloaded, as illus-
trated in Fig. 1. Second, since the ASHRAE 7-point thermal
sensation scale is discrete, it cannot describe the thermal
sensation details when the thermal sensation fluctuates within
a certain level of the ASHRAE 7-point thermal sensation
scale and cause information loss, as illustrated in Fig. 1.
In Fig. 1, the continuous blue curve indicates the real thermal
sensation whereas the orange polygonal line indicates the dis-
crete TSV based on the ASHRAE 7-point thermal sensation
scale. Moreover, in the subjective thermal sensation acquisi-
tion process in existing thermal comfort evaluation studies,
the time interval for TSV was relatively long, e.g., fifteen
minutes [33], five minutes [12], [34], three minutes [30],
or one minute [21], [22], thus causes a negative impact on
the real-time performance of the models.

II. METHODOLOGY
A. THE CONCEPT OF RELATIVE THERMAL SENSATION
In traditional ASHRAE 7-point thermal sensation scale,
the thermal sensation is discrete. In contrast, in this study,
the occupant’s real thermal sensation is considered to be
continuous. If we consider the thermal sensation to be a
continuously differentiable function f (t) of time t , then at
time t0, f (t) can be written in the Taylor series, as is shown
in (1).

f (t) = f (t0)+
f ′(t0)
1!

(t − t0)+
f ′′(t0)
2!

(t − t0)2 + . . . , (1)

f (t) ≈ f (t0)+ f ′(t0)(t − t0) (2)

According to Taylor’s theorem, the linear approximation
of f (t) for t near t0 is shown in (2). In (2), the first term f (t0)

VOLUME 9, 2021 36267



Z. Wang et al.: Proposal of Relative Thermal Sensation: Another Dimension of Thermal Comfort and Its Investigation

FIGURE 2. Schematic of the Relative Thermal Sensation (RTS).

is the exact thermal sensation degree at t0. The coefficient
of the second term f ′(t0), describing the gradient of the ther-
mal sensation, is precisely defined as the Relative Thermal
Sensation (RTS) in this study. In this paper, the authors
exclusively propose the concept of RTS and its real-time
evaluationmethod. Next, the 3-point Relative Thermal Sensa-
tion Scale (3-point RTSS) for gathering the Relative Thermal
Sensation Vote (RTSV) reported by the occupants for the
RTS evaluation is proposed. For the sake of simplification,
the 3-point RTSS is defined to be discrete and consists of
three categories ‘‘hotter,’’ ‘‘colder,’’ and ‘‘no change.’’ Each
category is called an RTSV. The RTSV is defined as ‘‘hot-
ter’’ when the occupant’s current thermal sensation is hotter
than the latest thermal sensation (when f ′(t) > 0); the
RTSV is defined as ‘‘colder’’ when the occupant currently
feels colder than the latest thermal sensation (when f ′(t) <
0); when the occupant’s current thermal sensation does not
change compared with the latest thermal sensation (when
f ′(t) = 0), the RTSV is defined as ‘‘no change.’’ The 3-point
RTSS can serve as a complementary thermal sensation index
for the traditional ASHRAE 7-point thermal sensation scale
for transient-state thermal comfort evaluation, as illustrated
in Fig. 2. Fig. 2 shows the schematic diagram of the RTS.
In Fig. 2, the left part shows the ASHRAE 7-point thermal
sensation scale, and the thick continuous curves indicate
the occupant’s real thermal sensation. The ‘‘hotter’’ periods,
‘‘colder’’ periods, and ‘‘no change’’ periods are depicted in
red, blue, and green, respectively. Note that the definition of
‘‘hotter’’ not only describes the transition from ‘‘warm’’ to
‘‘hot,’’ but also covers the transition from ‘‘cold’’ to ‘‘cool.’’
The same to the definition of ‘‘colder.’’ The concept of the
3-point RTSS sounds similar to the McIntyre 3-point thermal
preference scale (MCI) [13] but fundamentally different. The
McIntyre Index is defined as: ‘‘At this point in time, would

FIGURE 3. 7-point Absolute Thermal Sensation Scale (7-point ATSS) and
the 3-point Thermal Comfort Scale (3-point TCS).

you prefer to feel warmer, cooler, or no change? [7]’’ The
McIntyre Index emphasizes the thermal preference, whereas
the 3-point RTSS describes the real-time thermal sensation
variation trend.

Except for using the ASHRAE 7-point thermal sensation
scale exclusively, researchers modify the ASHRAE 7-point
thermal sensation scale or define their own thermal sensa-
tion scales in a variety of case studies [35]–[38]. In [33],
Ghahramani et al. used ‘‘comfortably warm’’ and ‘‘comfort-
ably cool’’ to express comfortable thermal states. To bet-
ter distinguish from the RTS and the 3-point RTSS, in this
study, similarly with [33], the authors denominate the thermal
sensation in the common sense f (t0) in (2) as the Abso-
lute Thermal Sensation (ATS). Also, the authors modify the
ASHRAE 7-point thermal sensation scale and give it a new
name: 7-point Absolute Thermal Sensation Scale (7-point
ATSS), as shown in Fig. 3. The 7-point ATSS has seven
categories ‘‘very hot,’’ ‘‘hot,’’ ‘‘warm,’’ ‘‘neutral,’’ ‘‘cool,’’
‘‘cold,’’ and ‘‘very cold.’’ Each category is called an Absolute
Thermal Sensation Vote (ATSV). The ‘‘warm,’’ ‘‘neutral,’’
and ‘‘cool’’ votes in the 7-point ATSS are defined to represent
the comfortably cozy state; the ‘‘hot’’ and ‘‘very hot’’ votes
express the uncomfortably hot state; the ‘‘cold’’ and ‘‘very
cold’’ votes express the uncomfortably cold state. By such a
definition, the 3-point Thermal Comfort Scale (3-point TCS)
can be derived from the 7-point ATSS, as illustrated in Fig. 3.
The 3-point TCS has three categories ‘‘hot,’’ ‘‘cozy,’’ and
‘‘cold.’’ Each category in the 3-point TCS is called a Thermal
Comfort Level (TCL).

Suppose the RTS can be evaluated accurately, it will be
very beneficial in predicting the next TCLwhen given the cur-
rent TCL. By incorporating the 3-point TCS and the 3-point
RTSS together, we can obtain the 9-point Transient Thermal
Comfort Scale (9-point TTCS), which is a complex model
and has the ability to describe both thermal comfort and ther-
mal sensation variation trend simultaneously, as described
in Fig. 4. The 9-point TTCS has nine categories ‘‘hot to hot,’’
‘‘hot,’’ ‘‘hot to cozy,’’ ‘‘cozy to hot,’’ ‘‘cozy,’’ ‘‘cozy to cold,’’
‘‘cold to cozy,’’ ‘‘cold,’’ and ‘‘cold to cold.’’ Each category
in the 9-point TTCS is called a Transient Thermal Comfort
Level (TTCL). For instance, in winter, suppose an occupant
stays in an air-conditioning room with the heating system
working on, and the occupant’s current TCL is ‘‘cozy.’’Mean-
while, if the occupant’s RTS is ‘‘hotter,’’ the TTCL will be
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FIGURE 4. 9-point Transient Thermal Comfort Scale (9-point TTCS) generated by incorporating the 3-point RTSS into the 3-point TCS.

FIGURE 5. Idea illustration.

‘‘cozy to hot’’. It means that we can reasonably infer that the
occupant’s next TCL may transit from ‘‘cozy’’ to ‘‘hot’’ if
the heating system proceeds to work on. In that case, it would
be better to stop heating the room to maintain the ‘‘cozy’’
TCL. On the other hand, if the TTCL were ‘‘hot to hot’’,
it means that the degree of discomfort (hot) of the occupant
will aggravate by the next time point. Note that in the 9-point
TTCS, since the ‘‘hot,’’ ‘‘cozy,’’ and ‘‘cold’’ are generated
by incorporating the ‘‘no change’’ RTS into the 3-point TCS,
they are considered to be instant steady TCL. If the TTCL
can be assessed accurately, it will be very beneficial to help
to avoid running into an uncomfortable TCL in advance. Not
only the thermal comfort can be ensured, but also the energy
will be saved.

B. DIFFERENT MATERIALS HAVE DIFFERENT THERMAL
PROPERTIES
As is known to all, different materials have different thermal
properties, such as heat conductivity, specific heat capacity,
et cetera. Fig. 5 shows a typical example of the main idea in
this study.

In Fig. 5, suppose we have two small particles, A and B,
surrounded by the air, and the system is in a steady-state
thermal environment. Suppose particles A and B have the
same shape, same size, and same heat conductivity while the

specific heat capacity of particle A is higher than the specific
heat capacity of particle B, and the initial temperatures of
particles A and B are the same. When the air temperature
starts to fluctuate uniformly, on account of the relatively
higher specific heat capacity of particle A, there will generate
a temperature difference between particles A andB.When the
air temperature starts to ascend, the temperature of particle B
will be higher than the temperature of particle A; when the
air temperature starts to descend, the temperature of particle
B will be lower than the temperature of particle A; when the
air temperature does not change, the temperature of particle
A and the temperature of particle B will be equal. Hence,
the variation trend of the air temperature can be inferred by
the temperature difference of particle A and particle B.

The lemma mentioned above illustrates the simplest case.
Generally speaking, when the air temperature increases, peo-
ple tend to feel ‘‘hotter’’; when the air temperature decreases,
people tend to feel ‘‘colder.’’ However, things are much more
complicated in the real world that only by comparing the tem-
perature of two particles in the thermal environment to iden-
tify people’s RTSmay cause amistake. The idea is to promote
the scenario from two particles into multiple points that lie
on a more generalized two-dimensional curved surface, e.g.,
the human body surface, as illustrated in Fig 6. Furthermore,
intuitively, the body surface temperature gradient may also
play an important role in determining the RTS.

According to [39], the specific heat capacity of the tissues
in skin layers plays an important role in preventing the deeper
tissues from thermal damage, which indicates that the heat
capacity distribution of human skin varies from location to
location. Also, in [40], Kashcooli et al. pointed out that
the distribution of blood vessels has an essential impact on
skin temperature distribution. Also, due to the geometrical
structure of the human body, some specific body regions are
protruding from the body trunk, and the blood vessel distribu-
tion density in which tends to be lower than the body trunk,
for instance, the legs, the feet, hands, ears, and nose. Thus,
the temperature in such areas may be more easily affected
by air temperature than in other areas. Moreover, as for the
body surface areas covered with clothes, the heat property
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FIGURE 6. Promotion from two particles to a surface.

FIGURE 7. Schematic of the body locations selected in the investigation.

should also vary from location to location. From the above,
the hypothesis is that different RTS corresponds to different
specific body surface temperature distribution, and the RTS
can be assessed by analyzing skin/clothes temperatures of
local body segments and subjective RTSV data by utilizing
machine learning classification algorithms.

C. EXPERIMENTAL DESIGN
The authors conducted an experiment to verify the hypothe-
sis. In [12], Choi et al. investigated the relationship between
local skin temperatures of the upper body and the TSV under
a slow air temperature variation scenario (1 ◦C/10 minutes).
In this study, in order to acquire an overall temperature distri-
bution of the whole body, the authors selected ten local body
segments not only covering the upper body but also including
the lower body from a thermal mannequin schematic in [41]

FIGURE 8. Schematic of the environmental test lab.

to investigate the skin/clothes temperatures under transient
thermal environments. The local body segments include the
forehead, the upper chest, the lateral arm, the dorsum of the
hand, the abdomen, the scapular blade, the anterior thigh,
the fibular shin, and the dorsum of the foot, as shown in Fig. 7.
According to [12], [42], wrist skin temperature has a strong
impact on thermal comfort. Apart from the nine locations
derived from [41], the authors also added the posterior wrist
into the investigation, as shown in Fig. 7.

The experiment was conducted in the environmental test
lab of Tokyo Gas Co., Ltd. in the winter season, Febru-
ary 2020. The environmental test lab consists of an external
environment and an inner chamber, as illustrated in Fig. 8.
There is an HVAC system inside the external environment.
The HVAC system is equipped with a boiler, a chiller,
and a humidity controller. The HVAC system controls the
air temperature and humidity of the external environment
to maintain the preset degree. The inner chamber has an
air-conditioner installed to adjust the air temperature inside
the inner chamber. Moreover, the inner chamber has a door to
allow for ventilation through the external environment. Due
to the fact that the external environment is much larger than
the inner chamber, the temperature variation of the external
environment can be neglected when opening the door of the
inner chamber to make heat exchange.
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FIGURE 9. Temperature control schemes of the inner chamber.

The authors used two temperature control schemes to
simulate two different scenarios, as is described below.
During the experiment, the temperature and humidity of
the external environment were adjusted to 18◦C and 50%,
respectively.

1) SCENARIO I
Due to the fact that the inner chamber allows for ventilation
from the external environment through the door, the authors
utilized this feature to simulate a rapid temperature variation
scenario. The temperature control scheme of the inner cham-
ber is described in Fig. 9. The whole procedure consists of
two identical gradual heating phases and two identical rapid
cooling phases. In the first phase, close the door and turn on
the heating mode of the air-conditioner in the inner chamber
to gradually heat the room for 15 minutes, the setpoint was
chosen as 30 ◦C. The 15-min-long heating phase is relatively
long enough to heat the room and make the room temperature
level off during the latter half of the heating phase. In the sec-
ond phase, turn off the air-conditioner and open the door
for 5 minutes. As a consequence, the air temperature of the
inner chamber will be drastically decreased approximately
to the temperature of the external environment through the
heat exchange with the external environment and will then
level off and fluctuate up and down within a small range.
By repeating the aforementioned two phases, a periodic tem-
perature signal with a period of 20 minutes can be generated.
The total duration of the experiment is 40 minutes. In both
heating and cooling phases, the air temperature is supposed
to be adjusted to an area where it does not rise or fall sig-
nificantly. The authors intended to investigate the RTS and
ATS behaviours under such a thermal condition. The RTS is
supposed to change when the inner chamber is sufficiently
cooled or heated.

2) SCENARIO II
This Scenario also consists of two identical gradual heat-
ing phases and two cooling phases, as described in Fig. 9.

Different fromScenario I, the authors added a gradual cooling
phase in Scenario II. In the heating phases, close the door and
turn on the heating mode of the air-conditioner in the inner
chamber, the setpoint was chosen as 30 ◦C. The first cooling
phase is the rapid cooling phase in which the door was opened
to make heat exchange with the external environment for
5 minutes. The second cooling phase is the gradual cooling
phase in which the air-conditioner was utilized to cool the
inner chamber, and the setpoint was chosen as 18 ◦C to keep
consistent with the air temperature of the external environ-
ment. The duration of the gradual cooling phase was set to
15 minutes long to ensure the air temperature to be lowered
approximately to 18 ◦C by the end of the cooling phase.
In addition, the duration of either of the two heating phases
was shortened to 10 minutes to keep the total experiment
duration to 40minutes to keep consistent with Scenario I. The
intention of adding the rapid cooling phase and the gradual
cooling phase together is to verify the applicability of the
proposed machine learning model for the RTS evaluation
under completely different cooling schemes.

D. EXPERIMENTAL PROCEDURE
The two scenarios mentioned above were randomly
selected and applied in the experiment. Six male students
(age 25 ± 1 years) at the University of Tokyo participated
in the experiment. Three subjects were applied to Scenario I,
and the other three were applied to Scenario II.

Before the experiment, the door was kept open to keep
the inner chamber air temperature approximately equal to
the air temperature of the external environment. The subjects
were requested to wear the same clothes (black short sleeves,
trousers, and cotton socks) and sit down on the pre-prepared
chair during the experiment. A laptop for the TSV input was
set on a desk in front of the chair. The desk and the chair
were arranged not to front the wind from the air-conditioner
or the door directly, as illustrated in Fig. 8. The subjects
put their feet on a pre-prepared thermal insulation pad to
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FIGURE 10. Midi LOGGER GL840.

prevent unnecessary conductive heat loss through the floor.
The subjects were requested to sit down on the chair before
the experiment for preparation to maintain a ‘‘no change’’
RTS (steady state). Before the experiment starts, the subjects
were asked to confirm whether their current RTSV is ‘‘no
change’’ or not.

During the preparation time (20 minutes), the thermo-
couples were fixed to the subjects’ specific local body seg-
ments. At the local body segments of the forehead, the lateral
arm, the posterior wrist, and the dorsum of the hand, skin
surface temperatures were measured. Whereas at the local
body segments of the upper chest, the abdomen, the scapular
blade, the anterior thigh, the fibular shin, and the dorsum
of the foot, clothes surface temperatures were measured.
The temperature data were recorded by a data logger (Midi
LOGGER GL840: Accuracy:± 0.5 ◦C, Resolution: 0.01 ◦C)
and thermocouples (Type T (copper-constantan)) per second
with accurate temporal synchronization, as shown in Fig. 10.
The authors used amedical tape to fix the thermocouples onto
the skin surface, or the clothes surface, as shown in Fig. 11.
While fixing the thermocouples onto the clothes surface,
loose areas were avoided to keep the thermocouples stable.
In general, mesial body parts were not considered. Since
mesial body parts usually rub against other body parts, when
it comes to the real application of using skin/clothes tem-
peratures of local body segments to predict thermal com-
fort, installing sensors on such body locations may cause
uneasiness and inaccuracy. The ambient air temperature was
measured per second by a thermocouple placed 60 cm above
the floor near the subject. Fig. 11 shows the whole experi-
mental setup. The subjects were not aware of the operation
of the air-conditioner and the opening/closing of the door
and were requested to vote the thermal sensation according
to subjective feelings. The experiment was approved by the
Research ethics committee of the University of Tokyo.

E. THERMAL SENSATION VOTE INPUT SYSTEM
A laptop was used for real-time TSV input. Table. 1 shows
the keyboard buttons corresponding to the RTSV and ATSV.

FIGURE 11. Experimental setup.

TABLE 1. TSV input rule.

Fig. 12 shows the keyboard layout for the RTSV and ATSV
input. The input rule is described in Table. 1. As this study
is focused on real-time transient-state thermal comfort eval-
uation, it is important to gather as much thermal sensation
details as possible. In fact, instead of inputting the RTSV
and ATSV exactly at a series of equally spaced time points,
the subjects were encouraged to instantly input the RTSV
and ATSV whenever they feel a thermal sensation change.
However, minimally, the subjects were requested to input
the TSV (RTSV or ATSV) once at least every 20 seconds.
There was an alarm clock program installed in the laptop
ringing every 20 seconds as a reminder. When hearing the
alarm, the subjects press the keyboard button instantly. Note
that the priority of the ATSV is higher than the priority of
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FIGURE 12. Keyboard layout for the TSV input.

FIGURE 13. Schematic of the RTSV processing method.

the RTSV. Concretely, if the subject feels a distinct thermal
sensation change in the 7-point ATSS, e.g., from ‘‘cool’’ to
‘‘cold,’’ the subject should press the keyboard button ‘‘2’’
rather than press the keyboard button ‘‘down’’ exclusively;
if the former ATSV is ‘‘cool’’ and the current ATSV is
also ‘‘cool’’, but the current ‘‘cool’’ sensation is colder than
the previous ‘‘cool’’ sensation, the subject should press the
‘‘down’’ keyboard button. That is to say, a transitioning from
one ATSV to another ATSV will also be counted to the
RTS. The timestamp of recording the pressings of the key-
board button has a resolution of 0.001 seconds. The ‘‘hotter’’
and ‘‘colder’’ RTSV were regarded to sustain 20 seconds
long after the input to keep consistent with the TSV input
interval when there is no successive ‘‘hotter’’ or ‘‘colder’’
RTSV within 20 seconds. To alleviate the subjects’ burden,
the authors did not set the ‘‘no change’’ RTSV as an active
vote in this investigation, time periods with no ‘‘hotter’’ or
‘‘colder’’ RTS were regarded as the ‘‘no change’’ periods.

The RTSV data processing method is illustrated in Fig. 13.
For the RTSV data, the authors set the resolution of the time
axis of the RTS to one second to keep consistent with the
temperature data by rounding down the RTSV timestamps
to the nearest integers (e.g., 12.632 seconds→ 12 seconds).
When there are multiple RTSV within one second, only the
last RTSV will be reserved. Next, complement the sustaining
‘‘hotter’’ and ‘‘colder’’ periods. Finally, complement the ‘‘no
change’’ periods. The time interval between the start time and

Algorithm 1 Calculate Local Body Temperature Difference
Input: LBTi(t), i = 1, . . . , n
Output: LBTD(t)
1: LBTD(t)← Empty List
2: for i← 1 to n do
3: for j← 1 to n do
4: if j 6= i ∩ j > i then
5: LBTDij(t) = LBTi(t)− LBTj(t)
6: LBTD(t).append(LBTDij(t))
7: end if
8: end for
9: end for
10: return LBTD(t)

the first RTSV timestamp was regarded as the ‘‘no change’’
period. For the ATSV data, the ATS between the start time
and the first ATSV timestamp was considered the same as the
first ATSV; the ATS between the end time and the last ATSV
timestamp was considered the same as the last ATSV. Then
the authors applied linear interpolation to the ATSV data with
a time interval of one second. Then round the ATS to the
nearest integers. Finally, based on Fig. 3, the TCL data can
be obtained from the ATS data.

F. RTS AND TCL EVALUATION BY MACHINE LEARNING
1) FEATURE EXTRACTION FOR RTS EVALUATION
In the RTS evaluation, the temperature differences between
one reference local body segment and all the other segments
were extracted as features according to the hypothesis men-
tioned above. The pseudo-code for calculating the tempera-
ture differences is described as follows.

Here, the input series LBTi(t), i = 1, . . . , n is each of the
local body segment temperatures, i is the serial number of
each local body segment, n is the number of local body seg-
ments, t is the sampling time. Sincewe selected ten local body
segments in this experiment, n was set to 10. Since the tem-
perature was measured per second, and the total duration of
the experiment was 40 minutes, 2400 samples were obtained
for each subject. The LBTDij(t) is the temperature difference
between local body segment i and local body segment j.
Consequently, 45 temperature differences were generated for
each timestamp and were appended to the LBTD(t).

Next, the moving average smoothing method was applied
to the LBTi(t) and LBTDij(t) to extract the smoothed LBTi(t)
and LBTDij(t) as features. The calculation method is shown
in (3) and (4). The LBTi(t) and LBTDij(t) are the smoothed
LBTi(t) and LBTDij(t), respectively. The window size was set
to 20 seconds to keep consistent with the TSV input interval.

LBTi(t) =
τ=9∑
τ=−10

LBTi(t + τ ), i = 1, . . . , n (3)

LBTDij(t) =
τ=9∑
τ=−10

LBTDij(t + τ ),

i, j = 1, . . . , n, j 6= i ∩ j > i (4)
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FIGURE 14. Data processing pipeline for the RTS and TCL classifications.

Next, the gradients of the LBTi(t) and LBTDij(t) were
extracted as features. The calculation method is shown in (5)
and (6). The interval for calculating the difference was set to
5 seconds. The∇LBTi(t) and∇LBTDij(t) are the gradients of
the LBTi(t) and LBTDij(t), respectively.

∇LBTi(t) = LBTi(t)− LBTi(t − 5), i = 1, . . . , n (5)

∇LBTDij(t) = LBTDij(t)− LBTDij(t − 5),

i, j = 1, . . . , n, j 6= i ∩ j > i (6)

2) FEATURE EXTRACTION FOR RTS EVALUATION USING
PRINCIPAL COMPONENT ANALYSIS (PCA)
In fact, some features extracted above are highly correlated
and redundant since the original skin/clothes temperatures
of different local body segments may have a very similar
variation trend, such as the abdomen temperature and the shin
temperature as shown in Fig. 17 and Fig. 18, thus causing
the multicollinearity issue. This problem is usually solved
by the principal component analysis (PCA). As an unsuper-
vised learning technique, the PCA projects the data onto a
relatively low-dimensional space and is a common feature
extraction method to address the multicollinearity issue. The
authors carried out a PCA test using the Python Scikit-learn
package. The LBTDij(t), the LBTDij(t), the∇LBTi(t), and the
∇LBTDij(t) were standardized and inputted to the PCAmodel
together for feature extraction. Instead of using the features
extracted above directly, the first 20 principal components
from the PCA output were used as the input of the RTS
classification model after normalization.

3) RTS AND TCL CLASSIFICATIONS
Fig. 14 shows the data processing pipeline for the RTS and
TCL classifications. In the RTS evaluation, the first 20 princi-
pal components from the PCA output were used as the input
of the RTS classification model after normalization. In the
TCL evaluation, the authors used amediocremethod inwhich
the skin/clothes temperatures of the ten local body segments

FIGURE 15. Training and test set separation.

(LBTi(t)) were simply used as the input of the TCL classifica-
tion model since it was not the key point of this investigation.
The outputs of the RTS and TCL classification models are the
RTS prediction and the TCL prediction, respectively.

The authors utilized a Multi-layer Perceptron (MLP) clas-
sifier and a Random Forest (RF) classifier to make pre-
dictions of the RTS and the TCL for each subject. The
MLP classifier and the RF classifier were trained using the
Python Scikit-learn package. Optimal hyper-parameters of
the MLP and RF classifiers in the RTS and TCL classifica-
tions were obtained using the grid search technique (MLP
classifier: ’hidden_layer_sizes’: [(4,), (6,), (8,), (10,), (12,),
(14,), (16,), (18,), (20,), (30,), (40,), (50,)], ’max_iter’=200,
’alpha’: [0.0001, 0.05], ’learning_rate’: [’constant’, ’adap-
tive’], ’solver’: [’sgd’, ’adam’]. RF classifier: ’n_estimators’:
[100, 300, 500, 700, 900, 1100], ’max_features’: [’auto’,
’sqrt’, ’log2’], ’max_depth’: [2, 3, 4, 5, 6]). Due to the limited
data capacity, to make full use of all the data, the authors
carried out the 5-fold cross-validation without shuffling sug-
gested by [43], in which the data samples of each subject were
equally partitioned into five equal-sized segments according
to chronological order. Then by iterating the process of using
four segments as the training set and using the remaining
one segment as the test set, as illustrated in Fig. 15, every
segment will be used as the test set once and generates the
prediction. By combining all the predictions generated by
all the segments, the whole prediction can be obtained. The
TTCL prediction then can be generated by incorporating the
RTS prediction into the TCL prediction.

III. RESULTS
The air temperature conditions in the four phases of the inner
chamber are summarized in Table. 2. In Scenario I, the stan-
dard deviations of the air temperature in both cooling phases
are lower than that in both heating phases since the tempera-
ture dropped rapidly and leveled off in both cooling phases.
In Scenario II, the standard deviation of the air temperature
in the second cooling phase is higher than that in the first
cooling phase, close to that in both heating phases since the
air temperature dropped slowly in the second cooling phase.
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FIGURE 16. Boxplot of local body segment temperatures for all subjects.

FIGURE 17. Experimental data (Scenario I & Subject 1).

FIGURE 18. Experimental data (Scenario II & Subject 4).

Fig. 16 presents the boxplot of the temperature distributions
of the ten local body segments obtained from the experi-
ment. No obvious difference can be observed between the
two scenarios. However, we can observe obvious individual
differences among the subjects. In both scenarios, the clothes

TABLE 2. Summary of the inner chamber temperature conditions in four
phases.

surface temperatures have a relatively higher variance than
that measured on the skin surface since the clothes have a heat
insulation effect. The forehead reached the highest tempera-
ture than other body segments; the shin and foot temperatures
had a higher variance than that of the abdomen, the chest, and
the back since the latter three local body segments occupy the
trunk of the body while the former two local body segments
are the body branches.

Fig. 17 and Fig. 18 show the representative data of two
subjects from the two scenarios, including the temperature
data, the original RTSV, the original ATSV, and the integrated
RTS. The red triangles and inverted blue triangles indicate the
original ‘‘hotter’’ and ‘‘colder’’ RTSV; the black dots indicate
the original ATSV; the green line shows the integrated RTS
calculated by taking the internal transitions within the ATSV
into account and adding the ‘‘no change’’ periods. In both
Fig. 17 and Fig. 18, during the periods when the subjects
mostly felt ‘‘hotter,’’ the shin temperature was higher than
the abdomen temperature. In contrast, when the subjects
mostly felt ‘‘colder,’’ the shin temperature was lower than
the abdomen temperature, which agrees with our hypothesis
mentioned above, indicating that it could be reasonable to
use local body segment temperature differences to predict the
RTS.

In Fig. 17, in the first heating phase and the first cooling
phase, when the air temperature leveled off for a while,
short periods of RTS transitioning from ‘‘hotter’’ to ‘‘colder’’
or ‘‘colder’’ to ‘‘hotter’’ can be observed. The reason was
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FIGURE 19. Prediction results of the RTS, the TCL, and the TTCL (Scenario I & Subject 1).

considered to be the adaptive effect according to [29]. In the
first cooling phase in Fig. 18, after an abrupt air temperature
drop, although the air temperature had an increment, the RTS
retained to be ‘‘colder,’’ revealing the fact that the RTS does
not always comply with the air temperature variation trend.

A. RTS AND TCL CLASSIFICATION RESULTS
Table. 3 shows the correspondence of the numerical labels of
the 3-point RTSS, the 3-point TCS, and the 9-point TTCS in

the prediction results of the classifications. The accuracy is
summarized in Table. 4. The confusion matrix, support (the
number of actual occurrences of each category), precision,
recall, and F1-score of the RTS classification result for all
subjects are summarized in Table. 5. Fig. 19 and Fig. 20 show
the prediction results of the RTS, the TCL, and the TTCL of
the two subjects from Scenario I and Scenario II as mentioned
above, respectively. In Scenario I, the RTS mean prediction
accuracy of the MLP and RF classifiers reached 0.63 and
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TABLE 3. Label references for the 3-point RTSS, the 3-point TCS, and the
9-point TTCS.

TABLE 4. Classification accuracy of the RTS, the TCL, and the TTCL.

0.60, respectively. In Scenario II, the RTS mean prediction
accuracy of the MLP and RF classifiers reached 0.60 and
0.48, respectively. The precision, recall, and F1-score of the
‘‘hotter’’ RTS and ‘‘colder’’ RTS are relatively higher than
the precision, recall, and F1-score of the ‘‘no change’’ RTS
in both scenarios. The MLP classifier outperformed the RF
classifier in the RTS classification result.

It is noticeable that around the switching point between
the heating and cooling phases in both scenarios, the RTS
transitions were well predicted, as shown in Fig. 19 and
Fig. 20. Some broad ‘‘no change’’ areas, such as in Fig. 19,
during 700 to 850 seconds and during 1150 to 1450 seconds,
and in Fig. 20, during 1510 to 1550 seconds and during
1650 to 1700 seconds, were well predicted. Also, many fine
details of the RTS were well predicted, such as in the second
cooling phase in Fig. 19 and the first heating phase in Fig. 20.

In Scenario I, the TTCL mean prediction accuracy of the
MLP and RF classifiers reached 0.50 and 0.50, respectively.
In Scenario II, the TTCL mean prediction accuracy of the
MLP and RF classifiers reached 0.45 and 0.38, respectively.
Since the number of classes is relatively large (nine), the pre-
diction result is not bad.

IV. DISCUSSION
In the first cooling phase in Fig. 20, the air temperature did
not show a monotonous downward trend after an abrupt drop
and even got an increment. Remarkably, even the ambient air
temperature got an increment, the RTS had no ‘‘hotter’’ and
was mostly ‘‘colder’’ during this period as mentioned above.

If the RTS were simply assessed by measuring the ambient
air temperature trend, a big mistake would be caused.

As we mentioned above, the F1-score of the ‘‘no change’’
RTS are relatively lower than the F1-score of the ‘‘hotter’’ or
‘‘colder’’ RTS. The reason is considered to be the potential
neglect of certain subtle thermal sensation changes under
gradual heating or cooling phases and cause inaccurate RTSV
under such a short voting interval (20 seconds).

In the RTS classification, the class imbalance problem
was not severe since the respective total durations of the
‘‘hotter,’’ ‘‘colder,’’ and ‘‘no change’’ RTS were not so much
imbalanced. In this investigation, the authors selected a mod-
est value (20 seconds) for the duration of the ‘‘hotter’’ and
‘‘colder’’ RTSV. Different ‘‘hotter’’ and ‘‘colder’’ RTSV
duration may lead to different results.

Moreover, the subjects felt ‘‘cozy’’ at the beginning of the
experiment in Fig. 19 and Fig. 20 but felt ‘‘cold’’ in the
first rapid cooling phase. However, the air temperature in
the first rapid cooling phase was no higher than that at the
beginning of the experiment, indicating that the ATS does
not monotonically depend on the air temperature but also
influenced by the context.

A. EARLY WARNING MECHANISM OF THE 9-POINT TTCS
When the subjects were in ‘‘cozy’’ TCL in the heating or
cooling phases, after some time, the TCL transited to ‘‘hot’’
or ‘‘cold’’ due to continuous heating or cooling effects. The
significance of the RTS is that the accurate RTS prediction
can contribute to accurate ‘‘cozy to hot’’ or ‘‘cozy to cold’’
TTCL predictions and generate early warnings of running
into ‘‘hot’’ or ‘‘cold’’ TCL. For instance, in Fig. 20, in the
rapid cooling phase, the subject’s TCL was still ‘‘cozy’’ after
the abrupt temperature drop and finally reached ‘‘cold.’’ Dur-
ing this period, the RTS was mostly successfully predicted as
‘‘colder.’’

B. LIMITATIONS
This study has some limitations. First, since the 3-point TCS
is derived from the 7-point ATSS, the ‘‘cozy’’ TCL contains
the ‘‘warm,’’ ‘‘neutral,’’ and ‘‘cool’’ ATS, the ‘‘cozy to hot’’
or ‘‘cozy to cold’’ TTCL does not exclusively mean the TCL
is getting away from ‘‘cozy’’ and may cause ambiguities. For
instance, suppose an occupant’s TTCL is ‘‘cozy to hot’’, but
the original ATSV is ‘‘cool,’’ the real ATS transition is from
‘‘cool’’ to ‘‘neutral,’’ namely, it is towards ‘‘cozy.’’ However,
it has no negative impact on our theory. For instance, as we
mentioned before, in winter, suppose an occupant is staying
in an air-conditioning room with the heating system working
on, and the occupant’s current TTCL is ‘‘cozy to hot.’’ In that
case, even the occupant’s current ATSV is ‘‘cool,’’ we can
also stop heating the room to keep the occupant in comfort-
ably cool state and even save more energy compared with the
case in which the TTCL is ‘‘cozy to hot’’ and the ATSV is
‘‘warm.’’

Second, in this experiment, since the 3-point RTSS only
has three categories (‘‘hotter,’’ ‘‘colder,’’ and ‘‘no change’’),
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FIGURE 20. Prediction results of the RTS, the TCL, and the TTCL (Scenario II & Subject 4).

it is only possible for qualitative analysis (classification).
A very slight ‘‘hotter’’ or ‘‘colder’’ RTS might not last for
20 seconds long and cause possible inaccurate RTS acqui-
sition. In the future study, it could be possible to upgrade
the Relative Thermal Sensation Scale to include more cat-
egories, e.g., the 7-point RTSS: ‘‘much colder,’’ ‘‘colder,’’
‘‘slightly colder,’’ ‘‘no change,’’ ‘‘slightly hotter,’’ ‘‘hotter,’’
‘‘much hotter.’’ Then, quantitative analysis becomes possible
since continuous RTS can be approximately represented, and
regression analysis becomes possible.

Third, as for the TCL evaluation, the authors used a rel-
atively simple method since it is not the key point of this
study, the prediction accuracy is tolerantly fair. Many existing
studies have focused on thermal comfort evaluation [12], [33]
or thermal preference evaluation [30] and got good results.
It is possible to get better prediction results by using more
features.

Moreover, though both the rapid and gradual cooling
phases and the gradual heating phase were investigated,
the rapid heating phase was not investigated in this study.
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TABLE 5. Confusion matrix, support (the number of actual occurrences of each category), precision, recall, and F1-score of the RTS classification.

Lastly, As this study is focused on personalized thermal
comfort evaluation and belongs to non-statistical analysis,
a relatively small subject sample size (six subjects) was
adopted. Even though the results are significant, a larger
subject sample size would enhance the validity of the results.

V. CONCLUSION
In this paper, the authors exclusively proposed the concept
of RTS as a complementary index for traditional thermal
comfort models and proposed a real-time RTS evaluation
method by measuring the skin/clothes temperatures of ten
local body segments. The significance of the RTS is that it
does not always comply with the ambient air temperature
trend. For instance, when the ambient air temperature is
ascending, the subject can also obtain a ‘‘colder’’ RTS due
to the previous context. The RTS brings new insight for
transient-state thermal comfort evaluation. The RTS provides

the ordinary thermal comfort model with another dimension
to form a complex thermal comfort model. By incorporating
the 3-point RTSS into the 3-point TCS, the 9-point TTCS
was derived, which has the ability to both predict the current
thermal comfort and the thermal sensation variation trend.
The authors used an MLP classifier and an RF classifier to
predict the RTS and TCL. For the RTS evaluation, in Scenario
I, the MLP and RF classifiers reached an average accuracy
of 0.63 and 0.60, respectively; in Scenario II, theMLP and RF
classifiers reached an accuracy of 0.60 and 0.48, respectively.
Due to the fact that the 9-point TTCS is the combination of
the 3-point TCS and the 3-point RTSS, the TTCL prediction
accuracy reached the lowest. The 9-point TTCS can provide
an early warning mechanism for thermal discomfort. The
miniaturization of temperature sensors and the non-intrusive
temperature measurements like the infrared cameras facilitate
practical applications in the future.

VOLUME 9, 2021 36279



Z. Wang et al.: Proposal of Relative Thermal Sensation: Another Dimension of Thermal Comfort and Its Investigation

ACKNOWLEDGMENT
The authors would like to thank Reina Aizawa and Chikato
Yokoyama for useful discussions and suggestions. Experi-
mental apparatus support from Tokyo Gas Company Ltd.,
is acknowledged.

REFERENCES
[1] Thermal Environmental Conditions for Human Occupancy,

ANSI/ASHRAE Standard 55-2017, ASHRAE Inc., 2017, vol. 2017,
p. 66.

[2] C. D. Korkas, S. Baldi, I. Michailidis, and E. B. Kosmatopoulos,
‘‘Occupancy-based demand response and thermal comfort optimization
in microgrids with renewable energy sources and energy storage,’’ Appl.
Energy, vol. 163, pp. 93–104, Feb. 2016.

[3] C. D. Korkas, S. Baldi, and E. B. Kosmatopoulos, ‘‘Grid-connected micro-
grids: Demand management via distributed control and human-in-the-loop
optimization,’’ in Advances in Renewable Energies and Power Technolo-
gies, I. Yahyaoui, Ed. Amsterdam, The Netherlands: Elsevier, Jan. 2018,
pp. 315–344.

[4] C. D. Korkas, S. Baldi, I. Michailidis, and E. B. Kosmatopoulos, ‘‘Intel-
ligent energy and thermal comfort management in grid-connected micro-
grids with heterogeneous occupancy schedule,’’ Appl. Energy, vol. 149,
pp. 194–203, Jul. 2015.

[5] R. Yao, B. Li, and J. Liu, ‘‘A theoretical adaptive model of ther-
mal comfort–adaptive predicted mean vote (aPMV),’’ Building Environ.,
vol. 44, no. 10, pp. 2089–2096, Oct. 2009.

[6] M. A. Humphreys and J. F. Nicol, ‘‘The validity of ISO-PMV for predicting
comfort votes in every-day thermal environments,’’ Energy Buildings,
vol. 34, no. 6, pp. 667–684, Jul. 2002.

[7] T. Chaudhuri, Y. C. Soh, S. Bose, L. Xie, and H. Li, ‘‘On assuming mean
radiant temperature equal to air temperature during PMV-based thermal
comfort study in air-conditioned buildings,’’ in Proc. 42nd Annu. Conf.
IEEE Ind. Electron. Soc. (IECON), Oct. 2016, pp. 7065–7070.

[8] K. Fabbri, ‘‘Thermal comfort evaluation in kindergarten: PMV and PPD
measurement through datalogger and questionnaire,’’ Building Environ.,
vol. 68, pp. 202–214, Oct. 2013.

[9] S. T. Mors, J. L. M. Hensen, M. G. L. C. Loomans, and A. C. Boerstra,
‘‘Adaptive thermal comfort in primary school classrooms: Creating and
validating PMV-based comfort charts,’’ Building Environ., vol. 46, no. 12,
pp. 2454–2461, Dec. 2011.

[10] Y. Yao, Z. Lian, W. Liu, and Q. Shen, ‘‘Experimental study on skin
temperature and thermal comfort of the human body in a recumbent posture
under uniform thermal environments,’’ Indoor Built Environ., vol. 16, no. 6,
pp. 505–518, Dec. 2007.

[11] H. Zhang, E. Arens, C. Huizenga, and T. Han, ‘‘Thermal sensation and
comfort models for non-uniform and transient environments: Part I: Local
sensation of individual body parts,’’ Building Environ., vol. 45, no. 2,
pp. 380–388, Feb. 2010.

[12] J.-H. Choi and D. Yeom, ‘‘Study of data-driven thermal sensa-
tion prediction model as a function of local body skin temperatures
in a built environment,’’ Building Environ., vol. 121, pp. 130–147,
Aug. 2017.

[13] S. I. U. H. Gilani, M. H. Khan, and W. Pao, ‘‘Thermal comfort analysis of
PMV model prediction in air conditioned and naturally ventilated build-
ings,’’ Energy Procedia, vol. 75, pp. 1373–1379, Aug. 2015.

[14] K. N. Nkurikiyeyezu, Y. Suzuki, and G. F. Lopez, ‘‘Heart rate variability as
a predictive biomarker of thermal comfort,’’ J. Ambient Intell. Humanized
Comput., vol. 9, no. 5, pp. 1465–1477, Oct. 2018.

[15] Z. Wang and R. Matsuhashi, ‘‘Research on thermal comfort by analyzing
LF/HF value and heat flow rate,’’ J. Soc. Energy Resour., vol. 40, no. 5,
pp. 154–159, 2019.

[16] Y. Yao, Z. Lian, W. Liu, C. Jiang, Y. Liu, and H. Lu, ‘‘Heart rate
variation and electroencephalograph—The potential physiological fac-
tors for thermal comfort study,’’ Indoor Air, vol. 19, no. 2, pp. 93–101,
Apr. 2009.

[17] T. Chaudhuri, D. Zhai, Y. C. Soh, H. Li, and L. Xie, ‘‘Random forest based
thermal comfort prediction from gender-specific physiological param-
eters using wearable sensing technology,’’ Energy Buildings, vol. 166,
pp. 391–406, May 2018.

[18] M. Beggiato, F. Hartwich, and J. Krems, ‘‘Using smartbands, pupillometry
and body motion to detect discomfort in automated driving,’’ Frontiers
Hum. Neurosci., vol. 12, p. 338, Sep. 2018.

[19] E. Schmidt and A. C. Bullinger, ‘‘Mitigating passive fatigue during
monotonous drives with thermal stimuli: Insights into the effect of different
stimulation durations,’’ Accident Anal. Prevention, vol. 126, pp. 115–121,
May 2019.

[20] H.Metzmacher, D.Wölki, C. Schmidt, J. Frisch, and C. van Treeck, ‘‘Real-
time human skin temperature analysis using thermal image recognition for
thermal comfort assessment,’’ Energy Buildings, vol. 158, pp. 1063–1078,
Jan. 2018.

[21] A. C. Cosma and R. Simha, ‘‘Thermal comfort modeling in transient
conditions using real-time local body temperature extraction with a ther-
mographic camera,’’ Building Environ., vol. 143, pp. 36–47, Oct. 2018.

[22] J. Ranjan and J. Scott, ‘‘ThermalSense: Determining dynamic thermal
comfort preferences using thermographic imaging,’’ in Proc. ACM Int.
Joint Conf. Pervas. Ubiquitous Comput., Sep. 2016, pp. 1212–1222.

[23] J. Miura, M. Demura, K. Nishi, and S. Oishi, ‘‘Thermal comfort mea-
surement using thermal-depth images for robotic monitoring,’’ Pattern
Recognit. Lett., vol. 137, pp. 1–6, Sep. 2019.

[24] Z. S. Zomorodian, M. Tahsildoost, and M. Hafezi, ‘‘Thermal comfort in
educational buildings: A review article,’’ Renew. Sustain. Energy Rev.,
vol. 59, pp. 895–906, Jun. 2016.

[25] A. Martínez-Molina, I. Tort-Ausina, S. Cho, and J.-L. Vivancos, ‘‘Energy
efficiency and thermal comfort in historic buildings: A review,’’ Renew.
Sustain. Energy Rev., vol. 61, pp. 70–85, Aug. 2016.

[26] R. F. Rupp, N. G. Vásquez, and R. Lamberts, ‘‘A review of human
thermal comfort in the built environment,’’ Energy Buildings, vol. 105,
pp. 178–205, Oct. 2015.

[27] M. Taleghani, M. Tenpierik, S. Kurvers, and A. van den Dobbelsteen,
‘‘A review into thermal comfort in buildings,’’Renew. Sustain. Energy Rev.,
vol. 26, pp. 201–215, Oct. 2013.

[28] R. Zhao, ‘‘Investigation of transient thermal environments,’’ Building Env-
iron., vol. 42, no. 12, pp. 3926–3932, Dec. 2007.

[29] R. J. de Dear and G. S. Brager, ‘‘Thermal comfort in naturally ventilated
buildings: Revisions to ASHRAE standard 55,’’ Energy Buildings, vol. 34,
no. 6, pp. 549–561, Jul. 2002.

[30] D. Li, C. C. Menassa, and V. R. Kamat, ‘‘Non-intrusive interpretation of
human thermal comfort through analysis of facial infrared thermography,’’
Energy Buildings, vol. 176, pp. 246–261, Oct. 2018.

[31] N. Djongyang, R. Tchinda, and D. Njomo, ‘‘Thermal comfort: A review
paper,’’ Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 2626–2640, 2010.

[32] B. W. Olesen and G. S. Brager, ‘‘A better way to predict comfort: The
new ASHRAE standard 55-2004,’’ ASHRAE J., vol. 46, no. 8, pp. 20–28,
Aug. 2004.

[33] A. Ghahramani, G. Castro, S. A. Karvigh, and B. Becerik-Gerber,
‘‘Towards unsupervised learning of thermal comfort using infrared ther-
mography,’’ Appl. Energy, vol. 211, pp. 41–49, Feb. 2018.

[34] K. B. Velt and H. A. M. Daanen, ‘‘Thermal sensation and thermal com-
fort in changing environments,’’ J. Building Eng., vol. 10, pp. 42–46,
Mar. 2017.

[35] H. B. Rijal, M. A. Humphreys, and J. F. Nicol, ‘‘Adaptive model and the
adaptive mechanisms for thermal comfort in Japanese dwellings,’’ Energy
Buildings, vol. 202, Nov. 2019, Art. no. 109371.

[36] R. Thapa, H. B. Rijal, and M. Shukuya, ‘‘Field study on acceptable indoor
temperature in temporary shelters built in nepal after massive earthquake
2015,’’ Building Environ., vol. 135, pp. 330–343, May 2018.

[37] S. Shahzad and H. B. Rijal, ‘‘Preferred vs neutral temperatures and their
implications on thermal comfort and energy use:Workplaces in Japan, Nor-
way and the UK,’’ Energy Procedia, vol. 158, pp. 3113–3118, Feb. 2019.

[38] H. B. Rijal, M. A. Humphreys, and J. F. Nicol, ‘‘Towards an adaptivemodel
for thermal comfort in Japanese offices,’’ Building Res. Inf., vol. 45, no. 7,
pp. 717–729, Oct. 2017.

[39] S. C. Jiang, N.Ma, H. J. Li, andX. X. Zhang, ‘‘Effects of thermal properties
and geometrical dimensions on skin burn injuries,’’ Burns, vol. 28, no. 8,
pp. 713–717, Dec. 2002.

[40] M. Kashcooli, M. R. Salimpour, and E. Shirani, ‘‘Heat transfer analysis
of skin during thermal therapy using thermal wave equation,’’ J. Thermal
Biol., vol. 64, pp. 7–18, Feb. 2017.

[41] Y. Kurazumi, T. Tsuchikawa, J. Ishii, K. Fukagawa, Y. Yamato, and
N. Matsubara, ‘‘Radiative and convective heat transfer coefficients of the
human body in natural convection,’’ Building Environ., vol. 43, no. 12,
pp. 2142–2153, Dec. 2008.

[42] S. Sim, M. Koh, K. Joo, S. Noh, S. Park, Y. Kim, and K. Park, ‘‘Estimation
of thermal sensation based on wrist skin temperatures,’’ Sensors, vol. 16,
no. 4, p. 420, Mar. 2016.

[43] C. Bergmeir and J. M. Benítez, ‘‘On the use of cross-validation for time
series predictor evaluation,’’ Inf. Sci., vol. 191, pp. 192–213, May 2012.

36280 VOLUME 9, 2021



Z. Wang et al.: Proposal of Relative Thermal Sensation: Another Dimension of Thermal Comfort and Its Investigation

ZIYANG WANG received the B.E. degree from
the Beijing University of Chemical Technology,
Beijing, China, in 2016, and the M.S. degree
in electrical engineering and information systems
from The University of Tokyo, Tokyo, Japan,
in 2019, where he is currently pursuing the Ph.D.
degree.

He joined Silver Egg Technology Company
Ltd., as an Intern, in 2018. He joined the Depart-
ment of Electrical Engineering and Information

Systems, The University of Tokyo, as a Research Assistant, in 2019. His
research interests include thermal comfort evaluation, machine learning, and
wearable cooling device.

HIROSHI ONODERA received the M.S. and
Ph.D. degrees in medical science from the Tohoku
University School of Medicine, Sendai, Japan,
in 1985.

From 1998 to 2005, he was an Associate Pro-
fessor with the Department of Neurology, Tohoku
University School of Medicine. Since 2014, he has
been a Project Professor with the Photon Sci-
ence Center and Electrical Engineering, Graduate
School of Engineering, The University of Tokyo.

His research interests include three-dimensional visualization of biological
samples and optogenetics produced clinical benefits for cancer diagnosis and
rehabilitation fields.

Dr. Onodera is a member of The Japanese Society of Internal Medicine,
The Japanese Society of Neurology, and The Robotics Society of Japan.

RYUJI MATSUHASHI received the B.E. and
Ph.D. degrees in electronics from The Univer-
sity of Tokyo, Tokyo, Japan, in 1985 and 1990,
respectively.

From 1990 to 1993, he was a Research Asso-
ciate with the Department of Geosystem Engi-
neering, Faculty of Engineering, The University of
Tokyo, where he has been an Associate Professor,
since 1994. Since 1999, he has been an Associate
Professor with the Graduate School of Frontier

Sciences, Institute of Environmental Studies, The University of Tokyo. Since
2003, he has been a Professor with the Institute of Environmental Studies,
The University of Tokyo. Since 2011, he has been a Professor with the
Electrical Engineering and Information Systems, Graduate School of Engi-
neering, The University of Tokyo. His research interests include analysis of
energy systems and global environmental issues produced various books and
papers.

Dr. Matsuhashi is currently a member of the Japan Society of Energy
and Resources, the Institute of Electrical Engineers of Japan, and the Japan
Institute of Energy.

VOLUME 9, 2021 36281


