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1. Introduction

Road transportation is a key contributor of emissions across the

world, as it has a significant hand in the economic development

of every country. Among the various sectors contributing to CO2

emissions in the world, road transport is responsible for a good

share of 16%. [1]

The effects of the emissions on the environment and human

health are well-known. Thus, there is a strong and urgent necessity

to reduce the emissions as much as possible. This is mainly for

two reasons – to meet the global targets to mitigate the impacts of

climate change, and a reduction in the emissions by reducing the

use of fuel will help to save the precious fossil resources. Though

there have already been many measures taken like technological

advancement and policies to control emissions, the increasing

number of vehicles in most parts of the world makes it a big

challenge.

This study is a contribution to the existing models of estimating

CO2 emissions using only the vehicular driving dynamics of

speed and acceleration. A novel technique based on using

windows of the driving dynamics has been presented, which will

be used with different machine learning models. Finally, the

optimal set of drive features that influence the fuel consumption

have been identified. The main motivation for this approach 

comes from the fact that the navigation data measurement in 

vehicles is becoming ubiquitous. At a regional level, providing a 

reasonable estimate of the CO2 emissions using this data saves the 

requirement for sensors. Such an estimation would be very 

important for many reasons, primarily in understanding the effects 

of transport emissions for framing policies to achieve a net carbon 

neutral society. At an individual level, this can help the users track 

their driving behavior. Moreover, these models can be integrated 

into traffic network simulators to better understand the impacts of 

traffic policies. 

2. Background

Among the models for estimating CO2 emissions, some widely

used ones at a regional level have been studied and mentioned

below. The Air Pollution Model (TAPM) developed by the

CSIRO Marine and Atmospheric Research is a widely used model

for predicting large scale emissions. However, such a model

doesn’t account for small scale perturbations in emissions from

vehicles, as it does not consider the driving dynamics. [2] Another

model is the MOBILE 6.2 developed by the US EPA 

(Environment Protection Agency) and European based COPERT

model. [3] They are based on the average speed, hence exclude

the driving dynamics.

This motivates to develop models where the emissions can be
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estimated based on the driving modes, such as the effects of ramps, 

intersections, and traffic controls. The instantaneous speed and 

acceleration can be considered as the key parameters in capturing 

this information. 

Among such models based on speed and acceleration, some 

models are based on VSP (vehicle specific power), a non-linear 

function of velocity and acceleration. [4] The emission rate is 

given by a lookup table for a range of VSPs. Some models are 

based on engine parameters like efficiency, power, friction factor, 

etc. [5] 

Oduro et al. [6] proposed a multiple linear regression model for 

a particular type of vehicles for driving styles in Australia. They 

have reported a significant linear relationship between emissions 

and speed, acceleration and speed have a greater impact. Ahn et 

al. [7] proposed a polynomial and hybrid models using 

instantaneous speed and acceleration, and this model has been 

used in several other works. Also, the fuel consumption 

estimation is estimated over larger periods, spanning over the 

order of several seconds, hence the macroscopic relationship 

between the driving dynamics and fuel consumed is observed. 

From these works, it has been observed that there are very few 

models for estimating CO2 emissions based on only the vehicle’s 

speed and acceleration. The models on a large scale are based on 

average speed, which excludes the driving dynamics. On the other 

hand, there are models based on many parameters which could 

pose some difficulties to be measured for a large-scale practical 

application. 

 

3. Models 

A brief overview of some common supervised regression models 

used in this study is given below. 

 

3.1 Linear regression 

Linear regression works on the principle of fitting a linear 

combination of transformations of input features to minimize the 

sum of squared error with the target response for all the data points. 

The optimal weights are obtained, characterizing the model. 

 

3.2 Support vector regression 

A support vector machine works with the objective to find a 

hyperplane in a transformed space, using a function called kernel 

that distinctly classifies all the data points. The data points closest 

to the hyperplane on either side of it are called the support vectors. 

 In the method of support vector regression (SVR), two decision 

boundaries are created within a threshold distance around the 

hyperplane, and the best fit hyperplane is the one that has the 

maximum number of points. This hyperplane will then serve as 

the mapping to estimate the target values for any point. The most 

important parameters to fit involves the choice of the kernel and 

the epsilon for the threshold distance. 

 

3.3 Random Forest regression 

Decision tree models are based on recursive partitioning – 

starting from the root, each node can be split into child nodes. 

These nodes can then be further split and they themselves become 

parent nodes of their resulting child nodes. At each spilt, a 

criterion of information gain is maximized. Decision tree learns 

the structure of the tree, features used at each node and the 

threshold parameters for each decision 

This way the entire space is split into regions based on a decision 

tree. For a decision tree regression, the optimal value of a 

predictive variable within a region is the average of the values of 

the training responses in that region. 

Random forest is an ensemble decision tree-based model which 

uses the technique of bootstrap aggregating or bagging. 

Bootstrapping is a technique of generating a set of samples from 

of the same size by selecting with replacement. For example, if 

the data set is {𝑥1, 𝑥2, 𝑥3} , some bootstrapped sets are 

{𝑥1, 𝑥3, 𝑥1}, {𝑥2, 𝑥2, 𝑥2}, etc. A collection of decision trees each is 

trained with a bootstrapped set of data. Each tree is trained using 

only a random subsampled set of features. The final estimate of 

the random forest is the aggregated output of each of the tree, 

which is the average estimate of all these decision trees in our case. 

 

3.4 Extra trees regression 

 The extra trees model is very similar to a random forest model, 

but it fits several randomized decision trees generally using the 

entire dataset and then uses the average of the estimates of the 

estimators. The main difference comes from the fact that a random 

forest chooses the optimum split whereas the extra trees regressor 

chooses it randomly. Thus, this fits the model much faster even 

for a large number of trees. 

 Random forest and extra trees are the most popular ensemble 

methods using decision trees. 

 

3.5 Multi-layer perceptron 

Multi-layer perceptron (MLP) model is one of the most popular 

deep learning models with a potential to characterize non-linear 

patterns. It consists of an input and output layer with many hidden 

layers in between them, each layer containing many nodes. It is 

trained using the principle of back-propagation where the weights 

at each layer are trained to minimize the loss. 
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4. Data and method 

The research content is explained in six parts – problem 

formulation, data and processing, correlation analysis, input 

features, model validation and simulations. 

 

4.1 Problem formulation 

Our objective is to estimate the amount of fuel consumption for 

every few seconds using the driving dynamics of a vehicle. The 

choice of this period is set to two seconds for a reasonable real-

time fuel consumption estimation. Later, the corresponding CO2 

emissions can be easily calculated using some direct conversion 

factors for the type of the vehicle. According to [8], for complete 

combustion, about 99% of the carbon in the burnt fuel is emitted 

as CO2, thus the CO2 emitted, and fuel consumed are greatly 

correlated. 

We had set some assumptions for our analysis. First, a type of 

the vehicle is fixed – a typical passenger car. Next, the vehicle is 

assumed to be in normal running condition, hence several factors 

i.e., the effects of age, etc., are ignored. The variables influencing 

the emissions can be classified into six broad categories, as travel-

related, weather-related, vehicle-related, roadway-related, traffic-

related, and driver-related factors. Among them, we only use the 

travel-related information in form of speeds and ignore the other 

variables assuming they are fixed. 

 

4.2 Data and processing 

A real-time experiment of a car ride is performed in Japan for a 

total duration of 30 minutes, and two time series datasets along 

with their corresponding time stamps are obtained. One of them 

is the drive data containing the Global Positioning System (GPS) 

parameters of the vehicle are measured by attaching a telematic 

tag during the ride which sends time-to-time data to an application 

via Bluetooth. Another sensor is attached to measure the fuel 

consumed periodically during each instant. 

The two datasets are obtained at different sampling rates, the 

drive data has 15 samples per second, and the fuel consumption is 

obtained at 20 samples per second at different time stamps. To fit 

a model, we need to merge these datasets to a single dataset of the 

lower rate, i.e., the sampling time 𝛥𝑡 = 1 15⁄  𝑠𝑒𝑐. This is done 

by computing the fuel consumption (𝑦𝑛) at the time stamps of the 

speeds using linear interpolation. It should be noted that smoother 

interpolation techniques like spline interpolation results in 

negative values of fuel consumption at some instances making the 

interpolated estimation of the fuel consumption invalid. 

From the drive data, only the vehicle speed ( 𝑣𝑛 ) is used 

throughout this analysis and the acceleration (𝑎𝑛 ) is calculated 

using the basic definitions in (1), (2) and (3). 

Original data: 𝑣𝑛, 𝑦𝑛 , 𝑛 = 1, 2, … 

 Backward-difference acceleration 𝒂𝒏
(𝒃)

=
𝒗𝒏−𝒗𝒏−𝟏

𝜟𝒕
 (1) 

 Central-difference acceleration 𝑎𝑛
(𝑐)

=
𝑣𝑛+1−𝑣𝑛−1

2 𝛥𝑡
 (2) 

 Non-negative acceleration 𝑎̃𝑛 = {
𝑎𝑛,   𝑎𝑛 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

A new feature non-negative acceleration is defined as the 

acceleration (backward-difference or central-difference) when it 

is positive and zero otherwise. The motivation for using this 

comes from the observation that during a drive, a positive 

acceleration consumes fuel, whereas a non-abrupt deceleration 

consumes little or almost no fuel. So, a non-negative acceleration 

may serve as an indicator more directly related to the fuel 

consumption than the typical acceleration. 

 As the objective is to estimate the fuel consumption every 2 

seconds, which corresponds to 30 samples, we use the aggregated 

data of the speeds and the fuel consumption as the total fuel 

consumed in that duration. That means, if the (Input, Target) of 

the original data is in the form (𝑣𝑛, 𝑦𝑛), then the transformed data 

will be in the form ([𝑣𝑛, 𝑣𝑛+1, ⋯ , 𝑣𝑛+29], 𝑧𝑛 = ∑ 𝑦𝑛+𝑖
29
𝑖=0 ). 

 

4.3 Correlation analysis 

During a ride, there is an empirical relationship between the fuel 

consumption and acceleration. The more the vehicle accelerates, 

the more fuel it consumed to drive faster. To observe this 

dependence mathematically, the Pearson correlation coefficient is 

calculated between these two series of data by shifting the fuel 

consumption for a range of indices. A positive shift implies 

making the future values of the series as the current values by the 

corresponding index and similarly a negative shift implies making 

the past values as the current values by the index.  

Fig.1 Correlation between various forms of accelerations and 

fuel consumption 
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Fig.1 shows the correlation coefficients for different forms of 

accelerations defined earlier. We observe that the highest 

correlation occurs at an index of 32, which means the current fuel 

consumption seem to depend on some past accelerations, and in 

general, the driving dynamics. Central difference acceleration is 

far more correlated to the fuel consumption than the backward 

difference. Also, the use of non-negative accelerations has been 

justified due to their significantly larger correlation coefficient. 

Next, we see the effect of applying moving average on this 

correlation. A moving averaged series is obtained by replacing the 

corresponding data point with the average of some data points 

around it in a window. Different sizes of this moving average 

window have been tested and the corresponding maximum 

correlation coefficient has been recorded. From Fig.2, we observe 

that the correlation increases significantly even for a small MA 

window, and there has been a consistent increase in the correlation 

by increasing the order of the moving averaging, finally followed 

by saturation. 

Fig.2 Maximum correlation between various moving averaged 

accelerations and fuel consumption 

We choose an MA window size of 5 for some tests, as the 

increase in the correlation coefficient is less than 1% for higher 

order. Again, central difference acceleration always demonstrated 

better correlations, and hence throughout this analysis, we shall 

use it by default, and acceleration implies central difference 

acceleration. 

This analysis provides some evidence for the dependence of the 

fuel consumption at an instant on the past accelerations, or the 

driving dynamics in general due to a peak in the correlation. 

However, the correlation coefficient measures the linear similarity 

between the two data series, and the relation between the fuel 

consumption and acceleration is not linear in general. Hence, 

many non-linear models will be used in this analysis, but the key 

takeaway from this analysis is to use the information of the past 

vehicle drive parameters to estimate the current fuel consumption. 

 

4.4 Input Features 

From the correlation analysis, we inferred that the fuel 

consumption may depend on some of the past driving dynamics 

of the vehicle. However, as we have a variety of information of 

the past – speed, acceleration, and many variants, the question 

remains which of these can be used to fit a model. We present a 

method to systematically use the past information for various 

cases to obtain which of this information serve the best for the 

estimation. For this, we introduce the concept of a drive window. 

To estimate the fuel consumption 𝑧𝑛, a window of drive data can 

be used as the input features, which is a set of consecutive points. 

We define a drive window, or simply a window of speeds (𝑣) of 

size 𝑀 and center index 𝑘 in (4). 

𝒗𝑛,𝑘
𝑀

= {

[𝑣
(𝑛−𝑘−

𝑀−1
2

)
, ⋯ , 𝑣(𝑛−𝑘), ⋯ , 𝑣

(𝑛−𝑘+
𝑀−1

2
)
] , if 𝑀 is odd

[𝑣
(𝑛−𝑘−

𝑀
2

)
, ⋯ , 𝑣(𝑛−𝑘), ⋯ , 𝑣

(𝑛−𝑘+
𝑀
2

−1)
] , otherwise

 

(4) 

Similarly, we can define a window of acceleration. The idea is 

to use the drive information in this window. Some useful choices 

of the features are defined below. 

Only speeds: 𝒗𝑛,𝑘
𝑀

= [⋯ , 𝑣(𝑛−𝑘−1), 𝑣(𝑛−𝑘), 𝑣(𝑛−𝑘+1), ⋯ ] 

Center speed and accelerations:              

[𝑣(𝑛−𝑘), 𝒂𝑛,𝑘
𝑀

] = [𝑣(𝑛−𝑘)| ⋯ , 𝑎(𝑛−𝑘−1), 𝑎(𝑛−𝑘), 𝑎(𝑛−𝑘+1), ⋯ ] 

Using a window of accelerations and one of the speeds, all the 

other speeds in the window can be approximately reconstructed. 

Center speed and non-negative accelerations: [𝑣(𝑛−𝑘), 𝒂̃𝑛,𝑘

𝑀
] 

This is the same as the previous case but using non-negative 

accelerations instead of normal accelerations. 

Mean speed and accelerations: [
1

𝑀
∑ 𝑣(𝑛−𝑘+𝑖)𝑖∈ℳ , 𝒂𝑛,𝑘

𝑀
] 

where ℳ is the range of indices such that the mean of all the 

speeds in the drive window is used. 

These are some of the basic sets of features, and in a similar 

fashion many other variants of these feature sets have been used. 

For each set, a grid search with window size (𝑀) and center index 

(𝑘) is performed to obtain an optimal set of drive parameters. 

 

4.5 Model validation 

The model is validated using the technique of k-fold cross-

validation (CV), where the entire data is split into k parts or folds 

without shuffling. The model is fitted on k-1 folds and tested on 

the remaining fold. This way, every data point will be tested in 

one of the splits. R2 score is used as the performance metric, as it 

is a popular regression metric. The final score of the model is the 

mean score for all the splits. 
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We maintain the order of the data samples, as this is a time series 

regression. We rely on the assumption that the data in each block 

is independent of the others, and thus the corresponding 

estimations use information only from that block thus making the 

validation meaningful. [9] 

 

4.6 Simulations 

As we aim to estimate the aggregated fuel consumed during the 

entire duration of 2 seconds, 𝑀 must be at least 30, as we need to 

use at least that period of the vehicle drive data. Otherwise, some 

portion of the drive information remains unused thus making the 

model impractical. So, a choice of range is decided as 𝑀 =

30, 31, ⋯ , 45 . This corresponds to sliding windows from 2 

seconds to 2.5 seconds of drive information. 

The list of center indices has been chosen in a range of the past 

driving dynamics as 𝑘 = 20, 19, ⋯ , −5  based on experiments. 

We use a 5-fold cross-validation technique for evaluating the 

performance for each case. Some popular regression models have 

been fitted and compared. 

 

5. Results and discussion 

5.1 Results using different regression analysis 

Some regression models have been fitted using the center speed 

and trajectory of acceleration as the input features and the cross-

validation (CV) scores have been calculated for a range of 

window sizes and window center indices mentioned earlier.  

Fig.3 Maximum cross-validation score for each window size 

using various regression models 

Fig.3 shows the CV score for each window size, using the 

optimal window center index, which resulted the maximum score. 

Among these models, random forest performs better than the 

other models for most of the window sizes. 

Support vector regression (SVR) and extra trees provide a decent 

peak score close to 0.60 and 0.58 respectively. As SVR works 

based on a very different method than tree-based approach, it does 

not detect an optimal window size, but instead the score decreases 

gradually and consistently by increasing the window size. SVR is 

fitted using different kernels – linear, polynomial and a radial 

basis function (RBF), among which RBF gives the best score, 

which is shown in the figure. Extra trees regression is not 

particularly helpful for our case, as the training time is very less 

even with a random forest. However, it is reported only to show 

that it could detect a peak score at a window size of 39 showing 

further evidence for that size as the optimal window size. 

 

5.2 Random Forest regression analysis 

In summary, using a decision tree-based ensemble model – 

random forest for estimating the fuel consumption using the 

vehicle trajectory would be apt. Intuitively, it works using a series 

of conditional cases – did the speed increase or decrease which is 

equivalent to whether the acceleration is positive or negative and 

allocates a fuel consumption value from the decision space based 

on the corresponding vehicle trajectory. 

Hence, the random forest model is tested in detail with many 

cases of the feature sets. Initially, the number of estimators (trees) 

in the model is set to 30, and later this has been increased. 

Among these features, using center speed and the trajectory of 

acceleration give the best score of 0.619. Using central difference 

acceleration is always better than using the backward difference 

acceleration. Using moving average of acceleration and non-

negative acceleration slightly reduced the scores. However, using 

acceleration all the scores are in a similar range of around 0.6. 

Fig.4 Maximum cross-validation score for each window size 

using a random forest model with 30 estimators for different 

input features 

Fig.4 and Table 1 summarizes the maximum scores along with 

the optimal window size and center index for various kind of 

features. For each case, a grid search is performed for different 

window sizes and center indices. Once the optimal window is 

estimated, the number of estimators in the random forest is varied 

from 20 to 200 in steps of 10 and among these, the highest score 
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has been reported in the table. 

Table 1 Cross-validation scores and the optimal window size 

and center index using a random forest with 30 estimators using 

various kinds of features 

Input features Score Size 
Center 

index 

 

 

Only speeds 0.529 36 13  

All speeds and accelerations 0.615 36 13  

Center speed and accelerations 0.619* 39 12  

Center speed and non-negative accelerations 0.610 39 12  

Center speed and MA (5) accelerations 0.604 41 12  

Center speed and MA (5) non-negative 

accelerations 
0.610 36 8 

 

Center speed and backward difference 

accelerations 
0.585 42 11 

 

Mean speed and accelerations 0.612 41 12  

Mean speed and non-negative accelerations  0.611 37 11  

Mean speed and MA (5) accelerations 0.601 41 14  

Mean speed and MA (5) non-negative 

accelerations 
0.606 40 8 

 

Mean speed and backward difference 

accelerations 
0.580 43 11 

 

*: Best score, acceleration implies central-difference acceleration 

The benefit of using non-negative acceleration seem to appear 

only at lower window sizes. For most of the other sizes, including 

the optimal window size of 39, it gave a score lower than normal 

acceleration. Thus, using normal acceleration captures better 

information for estimation than non-negative acceleration. 

There is a great consistency in the optimal windows for all these 

cases. Each unit of the window size and center index corresponds 

to 1/15 seconds, and hence the optimal duration of the drive data 

used is very similar for all cases. 

 

5.3 Multi- layer perceptron analysis 

Next a multi-layer perceptron is fitted. This model is mentioned 

separately from the others as it gives the best score when the 

trajectory of speeds is given directly as the input features instead 

of any acceleration. For the same range of window size (𝑀) and 

center indices (𝑘 ), a grid search of the optimal parameters for 

model for each case using a single hidden layer have been tested 

as mentioned in Table 2. 

Table 2 Choice of parameters for MLP 

Parameters Tested choices 
 

 

Hidden layer sizes 10, 15, 20, ⋯ , 80  

Solver Adam, SGD  

𝑎𝑙𝑝ℎ𝑎 0.01, 0.05, 0.1, 0.5  

Learning rate Constant, Adaptive  

 

After this search, the best cross-validation score was 0.642 and 

we found the optimal parameters to be 

𝑀∗ = 38, 𝑘∗ = 9, 𝐻𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑠𝑖𝑧𝑒∗ = 35,

𝑆𝑜𝑙𝑣𝑒𝑟∗: 𝐴𝑑𝑎𝑚, 𝑎𝑙𝑝ℎ𝑎∗ = 0.5 

Next, a multi-layer perceptron with two layers have been tested 

with various hidden layers and 𝑎𝑙𝑝ℎ𝑎, but it did not improve the 

performance. Thus, we fix a single layer model, instead of 

multiple layers. Later, using a single layer perceptron for this 

optimal window, the 𝑎𝑙𝑝ℎ𝑎 has been searched more finer in the 

range 0.1 to 1.0 in steps of 0.1. The optimal 𝑎𝑙𝑝ℎ𝑎 is found to 

be 0.6, and this is used as the final best model. Thus, clearly this 

model is the best among the regression models tested. Using an 

Adam optimizer, the learning rate of constant or adaptive does not 

apply. Using accelerations, the best score for 𝑀 = 39 was 0.618 

obtained at hidden layer size of 50 and 𝑎𝑙𝑝ℎ𝑎 of 15. Even the 

variants of acceleration have shown lower scores than using just 

speeds, and hence not analyzed any further. 

Fig.5 Cross-validation score using only speeds with a multi-

layer perceptron model using one layer 

Fig.6 Maximum cross-validation scores using an MLP model 

for each window size 

Fig.5 shows a 2-D plot of the cross-validation scores for each 

window size and center index. The window parameters with the 

highest cross-validation score is highlighted with a red square. For 

most of the window sizes, there is a unique index where the score 

reaches a local maximum, and that point is identified and used in 

Fig.6 which shows the maximum cross-validation score for each 

window size. 
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Interpreting the optimal window choice in time indices, to 

estimate the fuel consumption at an instant 𝑛, we use the speeds 

in the window duration [𝑛 − 9 − 38 2⁄ , 𝑛 − 9 + 38 2⁄ − 1] =

[𝑛 − 28, 𝑛 + 9]. This means, in a physical sense, to estimate the 

fuel consumption in the time interval [𝑡, 𝑡 + 2] , we used the 

information of speeds in the period [𝑡 − 28 15⁄ , 𝑡 + 9 15⁄ ]  =

[𝑡 − 1.867, 𝑡 + 0.6] , where 𝑡  is in seconds. This shift in the 

window of the dependence could possibly be due to the actual 

physics of the way the fuel is consumed to drive the vehicle at a 

particular speed. This method has helped to identify the optimal 

delay of this dependence with strong evidence. There is a 

remarkable similarity in the optimal window using the two 

approaches of random forest and an MLP model. 

Finally, we see the prediction plots of the fuel consumption using 

the best MLP model for each of the five splits of the cross- 

validation in Fig.7. 

It can be inferred that the estimate deviates greatly from the 

actual consumption in some cases. The rough shape of the 

consumption has been predicted well, but the magnitude of it has 

deviated, and mostly underpredicted. This could possibly be due 

to two reasons. First, we ignored the effects of several other 

parameters which contribute to the fuel consumption. This model 

can be easily adopted with any additional parameters too which 

can be measured, appending them to the list of input features.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 Actual and estimated fuel consumption using the best MLP model for each cross-validation split
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Another reason is that the training data was not sufficiently large 

to observe various driving characteristics. Splits 1, 3 and 4 

involved relatively smoother rides with little change in 

acceleration, making the estimation more reliable. On the other 

hand, splits 2 and 5 have many abrupt changes in the acceleration. 

Hence, training with more such driving dynamics certainly helps 

to increase the estimation score. 

 

6. Applications 

There are two practical applications where such a model can be 

potentially used– J-credit and eco-driving. 

 

6.1 J-Credit 

The J-Credit (Japan Credit) Scheme [10] is designed to certify 

the amount of GHG (greenhouse gas) emissions reduced and 

removed by sinks within Japan. Under this scheme, the 

government certifies the amount of greenhouse gas emissions 

(such as CO2) reduced or removed by sinks through efforts to 

introduce energy-saving devices and manage forests, as “credit”. 

This scheme was created by expansively integrating the Domestic 

Credit Scheme and the Offset Credit (J-VER; Japan's verified 

emissions reduction) Scheme. It is administered by the central 

government. 

Credits created under the scheme can be used for various 

purposes, such as achieving the targets of the Nippon Keidanren's 

Commitment to a Low Carbon Society, and carbon offset. 

A way in which the proposed model can be benefited using J-

Credit is discussed. First, a region and duration of the estimation 

analysis is decided. The driving trends of a statistically significant 

number of vehicles is measured during the entire duration in this 

region and the corresponding CO2 emissions are estimated using 

the model. This can be extrapolated to estimate the total vehicular 

emissions in that region making some assumptions. If these 

vehicles are to be replaced with non-emitting vehicles like electric 

vehicles, the total amount of emissions saved can be calculated 

and credited using this scheme. 

 

6.2 Eco-driving 

As mentioned earlier, these days the navigation data is often 

measured during transportation. Giving an estimate of the 

emissions using this data helps users to better understand the 

impact of the ride and encourages them to lower their emissions. 

There are many general rules for making a ride with relatively 

lesser emission, and it is summarized in [11]. 

(1) Adopt a driving style avoiding unnecessary accelerations and 

decelerations (braking) as this consumes more fuel. 

Fig.8 Outline of J-Credit scheme [10] 
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(2) Use the engine as efficiently as possible. As the engine load 

increases, the engine efficiency increases. Decreasing the speed 

decreases the loss due to internal friction. Thus, a combination of 

high loads and low speed consumes lesser fuel for the same power 

supplied by the engine. 

An “eco index” can be formulated based on the emissions during 

the ride. The more the emissions in the ride, the lesser the value 

of the eco index. Using this index, standards on the emissions can 

be set and encouraged to be followed. 

In this way, the proposed model can promote a convenient way 

to monitor and encourage drivers to make their ride more 

sustainable. A display on the vehicles can show the real-time 

emissions during the ride so that the drivers can be more aware of 

their profile of emissions.  

 

7. Conclusion 

The motivation for developing models for estimating the CO2 

emissions is clear not only for understanding the impacts of the 

emissions on the environment but also provide a scope to reduce 

them. The vehicle speed and acceleration have a major impact on 

the CO2 emissions through the fuel consumption, and thus the 

driving dynamics can be used as features to estimate them. A 

method has been presented using a drive window for obtaining 

the time window of the driving dynamics which the fuel 

consumption largely depends on. Some machine learning models 

have been applied and the multi-layer perceptron is the best model 

which resulted a reasonably good R2 score for practical fuel 

consumption estimation. The advantage of this method is that it 

can be extended to any other type of models and using more 

features influencing the fuel consumption and the results can be 

compared. We can use this model to gain a J-Credit and promote 

eco-driving. The estimations at a regional level can be done in 

collaboration with the municipalities. In the future, many other 

factors can be considered to make the estimation more accurate. 

Also, the correlation between CO2 reduction and safety drive will 

be studied. 
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